Energetics perspectives on SOM decomposition

Tobias Bölscher *UMR EcoSys – Université Paris-Saclay, INRAe, AgroParisTech tobias.bolscher@inrae.fr*

What's on the menu?

- Definition of energetics
- Why energetics approaches?
 The Microbial Engine
- Classification and examples focusing on:
 - Microorganisms the Engine
 - Soil Organic Matter the Fuel
 - How Microorganisms and SOM interact Driving the Engine
 - The Environmental and its constrains the Road Network

Credits

Anke M. Herrmann

Louis Dufour

Marco Keiluweit

Unil

UNIL | Université de Lausanne

Definition

Energetics:

"The branch of science which <u>deals with</u> the properties of <u>energy</u> and the way in which it is redistributed in physical, chemical, or biological processes."

Oxford English Dictionary

Why using energetics to investigate SOM decomposition?

Life requires (free) energy

"All living organisms need energy to grow and reproduce, maintain their structures, and respond to their environments. Metabolism is the set of life-sustaining chemical processes that enables organisms transform the chemical energy stored in molecules into energy that can be used for cellular processes."

https://courses.lumenlearning.com/boundless-biology/chapter/energy-and-metabolism/

Energetic demands drive element cycles

The microbial engine

Organic Matter

Fuel for the Soil Engine

Microorganisms

Biological Engine of the Earth

The microbial engine

Fuel for the Soil Engine

Environment

<u>Microorganisms</u>

Biological Engine of the Earth

Road Networks and Conditions to drive the engine

THERMODYNAMICS

First law of thermodynamics:

Energy can be **transformed** (changed from one form to another), but cannot be created or destroyed.

The engine: Approaches focusing on MICROORGANISMS

Isothermal calorimetry

What is isothermal calorimetry?

Calorimeter

- Latin: calor = heat
- Greek: μέτρο (métro) = to measure

Measuring heat flow of biological processes
 proportional to the rate of chemical or physical processes

Isothermal = constant temperature

TAM Air calorimetry

History of calorimetry

Antoine Lavoisier (1743-1794) *Father of modern chemistry*

- Recognized oxygen and hydrogen
- Involved in the reformation of the chemical nomenclature

'Ice calorimeter' (1782-83)

Lavoisier & Laplace

Liquid water produced by melting ice

 heat produced by the reaction taking place atop the ice

Isothermal calorimetry on soil

TAM Air calorimetry

Temperature range: 5 – 90 °C Thermostat stability: 0.02 °C Detection limit: 4 μW

Microbial activity

Bölscher et al. (2016) Biol. Fertil. Soils 52

The fuel:

Approaches focusing on SOIL ORGANIC MATTER

I. Energy content of OM

Substrates	Chemical structures	Standard molar enthalpy of combustion $\Delta H_c^{o^*}$
N-acetyl glucosamine	HO HO HO CH ₃ OH	-3 958.9 kJ mol ⁻¹
γ-aminobutyric acid	H ₂ N OH	$-2~280~\mathrm{kJ}~\mathrm{mol}^{-1}$
L-alanine	H ₃ C NH ₂ OH	-1 621 kJ mol ⁻¹
D-glucose		-2 813.6 kJ mol ⁻¹
α-cyclodextrin	$ \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	-15 333.6 kJ mol ⁻¹
citric acid	но ОН ОН	-1 960.6 kJ mol ⁻¹
α-ketoglutaric acid	но О ОН	-1 801.11 kJ mol ⁻¹
Litter ^a SOM ^b DOM ^c		-39 to -43 kJ g ⁻¹ C -34 to -37 kJ g ⁻¹ C -45 to -56 kJ g ⁻¹ C

Combustion of organic mater in oxygen atmosphere → measures energy content (as standard enthalpy of combustion)

^a Currie (2003) Glob. Change Biol. 9
^b Bölscher et al. (2017) Soil Biol. Biochem. 109
^c Dufour et al. (202) Soil Biol. Biochem. 173

II. Thermal stability of OM

Differential Scanning Calorimetry (DSC) - Differential Thermogravimetry (DTG)

> Combustion of OM during constant temperature increase DSC: measures <u>heat release</u> DTG: measures <u>weight loss</u>

> Thermal stability as a proxy of resistance against decomposition
> Energy content (combined integrals of DSC and DTG)

Rovira et al. (2008) *Soil Biol. Biochem.* 40 Plante et al. (2009) *Geoderma* 153 Barros et al. (2020) *Oikos* 129

II. Thermal stability of OM

Differential Scanning Calorimetry (DSC) - Differential Thermogravimetry (DTG)

Combustion of OM during constant temperature increase DSC: measures <u>heat release</u> DTG: measures <u>weight loss</u>

Thermal stability as a proxy of resistance against decomposition
 Energy content (combined integrals of DSC and DTG)

Rovira et al. (2008) *Soil Biol. Biochem.* 40 Plante et al. (2009) *Geoderma* 153 Barros et al. (2020) *Oikos* 129

II. Thermal stability of OM

Differential Scanning Calorimetry (DSC) - Differential Thermogravimetry (DTG)

Thermal indices:

DSC-T₅₀: Temperature at which 50% of the energy release has occurred

TG-T₅₀: Temperature at which 50% of the weight loss has occurred

Rovira et al. (2008) *Soil Biol. Biochem.* 40 Plante et al. (2009) *Geoderma* 153 Barros et al. (2020) *Oikos* 129

III. Contradictions – SOM energy content

III. Contradictions – SOM energy content

Driving of the engine: Approaches focusing on INTERACTIONS of **MICROORGANISMS** and SOIL ORGANIC MATTER

Common approach addresses C

Carbon-Use Efficiency (CUE):

 $CUE = \frac{Biomass - C}{Biomass - C + \sum CO_2 - C}$

Biomass: substrate incorporation into microbial biomass ΣCO_2 -C: cumulative respiration from substrate

Microbial metabolic-use efficiency

Residual substrate assays

Bölscher et al. (2020) Soil Biol. Biochem. 140 Bölscher et al. (2017) Soil Biol. Biochem. 109 Bölscher et al. (2016) Fert. Biol. Soils 52

Thermodynamic Efficiency

 $= 1 - rac{Heat_{released}}{Energy_{added} - Energy_{residual}}$

Determined after 15% added substrate was used → <u>Same workload</u> for microorganisms

Bölscher et al. (2016) Biol. Fertil. Soils 52

Glycogen > D-Glucose > L-Alanine

Forest > Arable land, Ley farming and Grassland

Bölscher et al. (2016) Biol. Fertil. Soils 52

II. Energetic return-on-investment **Decomposition** *→* **redox reactions** Example: a lipid **Gibbs** energy **Overall:** $C_{18}H_{32}O_6 + 26O_2 \rightarrow 18CO_2 + 18H_2O_2$ -10420 kJ Mol⁻¹ **Oxidation:** $C_{18}H_{32}O_6 + 34H_2O \rightarrow 18CO_2 + 104e^- + 104H^+ + 1924 kJ Mol^{-1}$ **Reduction:** $26O_2 + 104e^- + 104H^+ \rightarrow 52H_2O_2$ -12344 kJ Mol⁻¹ The oxidation half-reaction (i.e. the breakdown of the lipid)

requires an energy input. Energy is gained from producing water molecules rather than breaking carbon substrate.

Courtesy M. Kleber

LaRowe & Van Cappeln (2011) *Geochim. Cosmochim. Acta* 75 Willems et al. (2013) *Polym. Degrad. Stab.* 98

Willems et al. (2013) Polym. Degrad. Stab. 98

 E_a via $\Delta G_{C_{ox}}^{0}$ & nominal oxidation state of carbon *NOSC*

Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS)

NOSC =
$$-\frac{(-Z+4*C+H-3N-2O+5P-2S)}{C} + 4$$

Dufour et al. (2022) Soil Biol. Biochem. 173

TAM Air calorimetry

DOC extraction Cross incubation

Microbial activity over 24 h at 25 °C

Dufour et al. (2022) Soil Biol. Biochem. 173

Incubation experiment (279 days)

Treatments

- A. Soil planted with grass
- B. Soil without plants

Soil respiration Continues labelling with ¹³C/¹⁴C depleted air → Destination between native SOM derived C and C rhinoceroses

Energetic ROI

- Bomb calorimetry $\rightarrow \Delta E$
- Rock-Eval[®] \rightarrow E_a

Bioenergetics control soil C dynamics across depth

Henneron et al. (2022) Nat. Comm. 13

Bioenergetics control soil C dynamics across depth

Henneron et al. (2022) Nat. Comm. 13

The road network: Approaches focusing on the ENVIRONMENT and ITS CONSTRAINS

Biogeochemistry (2016) 127:157–171 DOI 10.1007/s10533-015-0180-6

SYNTHESIS AND EMERGING IDEAS

Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils?

Marco Keiluweit · Peter S. Nico · Markus Kleber · Scott Fendorf

Keiluweit et al. (2016) Biogeochem. 127

Aggregation

Rhizosphere

Aerobic metabolism most common metabolism in upland soil. → O₂ as electron acceptor

But, oxygen limitations

- in aggregations

 (microbial consumption, limited diffusion)
- around roots

 (root respiration, release of reductants, stimulated microbial activity)

SOM mineralization decreases under O, limitation

$$R_{C-min} = R_{max} * \mathbf{B} * F_k * F_T$$

R_{c-min}: rate of the C mineralization reaction R_{max}: maximum reaction rate per unit biomass B: active microbial biomass F_k: kinetic factor representing the microbes' ability to quire and process reactants (i.e. enzyme kinetics, mineral protection, physical isolation) F_T: Thermodynamic driving force

 $0 \leq F \leq 1$

$$F_T = 1 - \exp\left(\frac{\Delta G_{C\,reaction} + m\,\Delta G_{ATP}}{nRT}\right)$$

 $\Delta G_{C \ reaction}$: Gibbs free energy of the C mineralization reaction (i.e. catabolic reaction) ΔG_{ATP} : Gibbs free energy required for ATP synthesis (i.e. provides energy for anabolism) n: stoichiometry of reaction m: stoichiometry of ATP production R: gas constant T: temperature

$$F_T = 1 - \exp\left(\frac{\Delta G_{C\,reaction} + m\,\Delta G_{ATP}}{n KT}\right)$$

$$F_T = 1 - \exp\left(\frac{\Delta G_{C\,reaction} + m \Delta G_{ATP}}{nRT}\right)$$

$$F_{T} = 1 - \exp\left(\frac{\Delta G_{C\,reaction} + m\,\Delta G_{ATP}}{nRT}\right)$$

Reminder

Decomposition *→* **redox reactions** Example: a lipid **Gibbs** energy **Overall:** $C_{18}H_{32}O_6 + 26O_2 \rightarrow 18CO_2 + 18H_2O_2$ -10420 kJ Mol⁻¹ **Oxidation:** $C_{18}H_{32}O_6 + 34H_2O \rightarrow 18CO_2 + 104e^- + 104H^+ + 1924 kJ Mol^{-1}$ **Reduction:** $26O_2 + 104e^2 + 104H^+ \rightarrow 52H_2O$ -12344 kJ Mol⁻¹

Oxygen as electron acceptor!

What about other electron acceptors? -> anaerobic conditions

Courtesy M. Kleber

Anaerobic conditions can hamper the decomposition of certain SOM substrates due to thermodynamic limitations.

The environment (road network) prevents the microbial engine to run – properly or at all – on certain fuel.

Keiluweit et al. (2016) *Biogeochem.* 127 Keiluweit et al. (2017) *Nat. Commun.* 8

The microbial engine

Resources

- Barros *et al.* (2020) Thermodynamics of soil organic matter decomposition in semi-natural oak (Quercus) woodland in southwest Ireland. *Oikos* 129, 1632-1644.
- Bölscher *et al.* (2016) Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. *Biology and Fertility of Soils* 54, 547-559.
- Bölscher *et al.* (2017) Temperature sensitivity of substrate-use efficiency can result from altered microbial physiology without change to community composition. *Soil Biology & Biochemistry* 109, 59-69.
- Bölscher *et al.* (2020)
- Currie (2013) Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils. *Global Change Biology* 9, 919-929.
- Dufour et al. (2022) Potential energetic return on investment positively correlated with overall soil microbial activity. *Soil Biology* & *Biochemistry* 173, 108800.
- Harris *et al.* (2012) The thermodynamic efficiency of soil microbial communities subject to long-term stress is lower than those under conventional input regimes. *Soil Biology & Biochemistry* 47, 149-157.
- Harvey *et al.* (2016) Discrimination in Degradability of Soil Pyrogenic Organic Matter Follows a Return-On-Energy-Investment Principle. *Environmental Sciences and Technology* 50, 8578-8585.
- Herrmann *et al.* (2014) Isothermal microcalorimetry provides new insight into terrestrial carbon cycling. *Environmental Sciences and Technology* 48, 4344-4352.
- Henneron et al. (2022) Bioenergetic controls of soil carbon dynamics across depth. Nature Communications 13, 7676.
- Keiluweit *et al.* (2016) Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? *Biogeochemistry* 127, 157-171.
- Keiluweit *et al.* (2017) Anaerobic microsites have an unaccounted role in soil carbon stabilization. *Nature Communications* 8, 1771
- LaRowe & Van Cappeln (2011) Degradation of natural organic matter: A thermodynamic analysis. *Geochimica et Cosmochimica Acta* 75, 2030-2042.
- Lurenz et al. (2023) Energy content of soil organic matter in soil profiles investigated by bomb calorimetry and DSC-TG. Conference presentation at EGU23, DOI: 10.5194/egusphere-egu23-6542
- Manzoni *et al.* (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. *New Phytologist* 196, 79-91.
- Plante et al. (2009) Application of thermal analysis techniques in soil science. *Geoderma* 153, 1-10.
- Rovira *et al.* (2008) Changes in litter properties during decomposition: A study by differential thermogravimetry and scanning calorimetry. *Soil Biology & Biochemistry* 40, 172-185.
- Willems et al. (2013) The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. *Polymer Degradation and Stability* 98, 2140-2145.