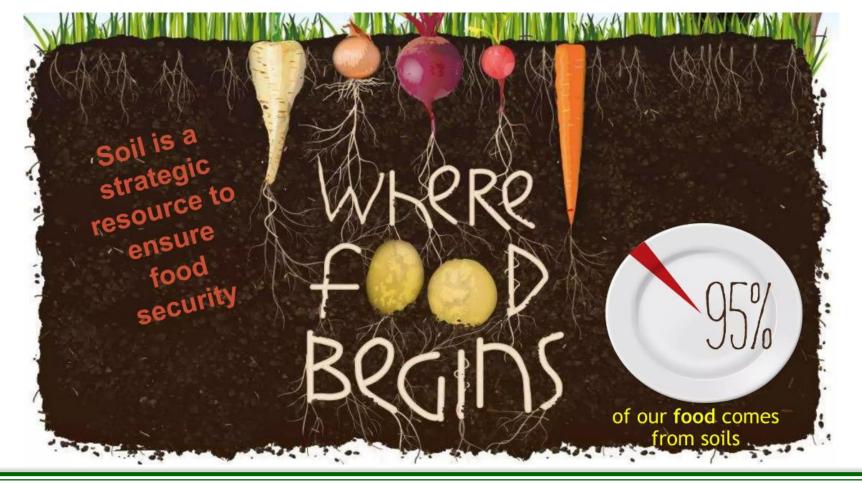


LAMMC LAMMC LITHUANIAN RESEARCH CENTRE FOR AGRICULTURE AND FORESTRY


Assessment of management practices to prevent soil degradation threats on Lithuanian acid soils

Mockevičienė Ieva, Feiza Virginijus, Feizienė Dalia, Kadžiulienė Žydrė, Stulpinaitė Urtė, Antanaitis Šarūnas

Lithuanian Research Centre for Agriculture and Forestry

LAMMC

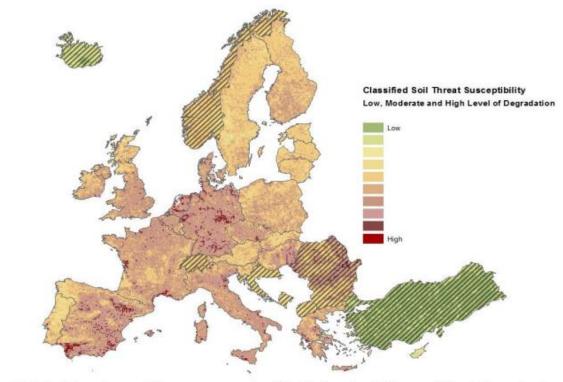


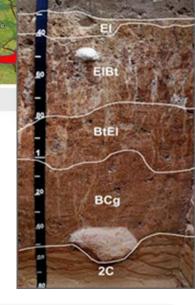
Figure 14.3: Soil threat map of Europe summarized for the low (weighing coefficient 1), moderate (weighing coefficient 2) and high (weighing coefficient 3) category of degradation. For the shaded areas, not all threats are mapped.

Source: Jannes Stolte, Mehreteab Tesfai, Lillian Øygarden, Sigrun Kværnø, Jacob Keizer, Frank Verheijen, Panos Panagos, Cristiano Ballabio, Rudi Hessel ; Soil threats in Europe; EUR 27607 EN; doi:10.2788/488054 (print); doi:10.2788/828742 (online)

- The majority of world's soil resources are in only fair, poor and very poor condition.
- The most significant threats to soil function at the global scale are soil erosion, acidification, soil organic carbon loss, nutrient imbalance and soil contamination.

Region	Seil erosien	Organic carbon change	Nutrient	Salisization	Soil sealing	Lass of biodiversity	Soil palletion	Addification	Compaction	Water- logging
Sub-Saharan Africa	Per O	Pur	5 T	in O	Ged	0	Seed O	Four	Gosd	Geed
Asia	7447 O	Page (3)	her O	Pour	20	tar O	Pear	tur O	har O	0
Europe and Eurasia	fair O	Pear	tur (0)	Por O	10	Ö	Poer O	hur O	in Ø	NH O
Latin America and the Caribbean	Per O	fur O	Par O	0	tur O	58 0	10 0	tw O	be O	10
Near East and North Africa	Very Poer O	tur O	fond O	0	Very Feer	Pase O	Yary Poor	Gent	her O	Geod
North America	0	0	te o	6001 O	0	Gond ()	30	10	in O	Contraction of the second
Southwest Pacific	0	tas O	0	Good	Coal O	feed O	Good O	0	to O	Cont ()

sustainable soil management


The aim of this study was: (1) to determine the soil quality, degradation, and resistance indices under different agricultural management practices and (2) to find out whether management-induced changes are large enough to have the potential to reduce soil degradation.

Methodology

- The study was based on comparing physicochemical indicators data from 3 long-term experiments, conducted in Western part of Lithuania. Changes in soil properties during the last 20 years (1999-2019) were identified.
- The soil of the experimental site is *Bathygleyic Dystric Glossic Retisol* (texture moraine loam (clay 13–15%)).

8

LAMMC

Methodology – selected measures

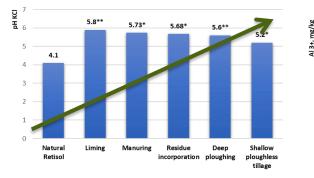
9

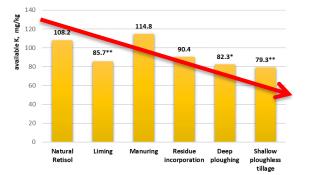
Methodology – calculations

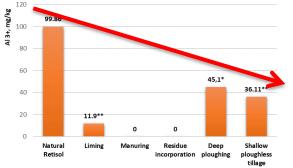
Soil degradation index (DI)

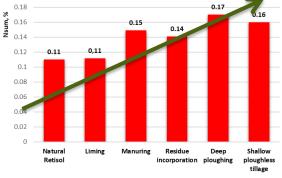
Soil resistance index (SRI)

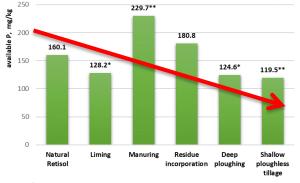
$$\mathrm{DI} = \frac{(\mathrm{A} - \mathrm{B})\mathrm{x}100)}{\mathrm{B}}$$

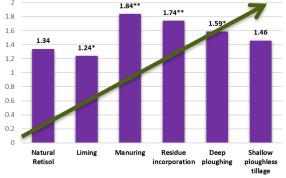

Where DI = degradation Index; A= the mean value of soil quality parameter for selected measure and B= the mean value of soil quality parameter for control soil


$$SRI = 1 - \frac{2|D_0|}{(X_b + |D_0|)}$$

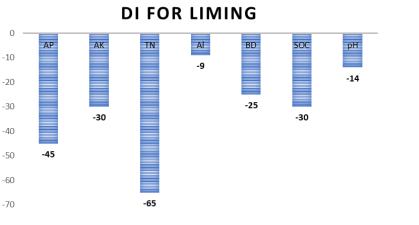

where D_0 is the differences between the disturbed soil (X_a) at the end of the disturbance and the control (X_b). SRI is restricted between -1 and +1. SRI of +1 indicates the maximum resistance without the effect of disturbance, and lower values show less resistance with stronger effect of disturbance

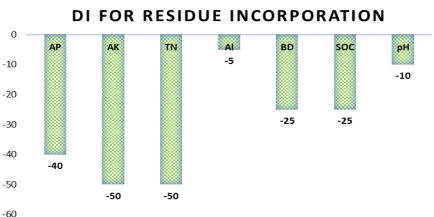


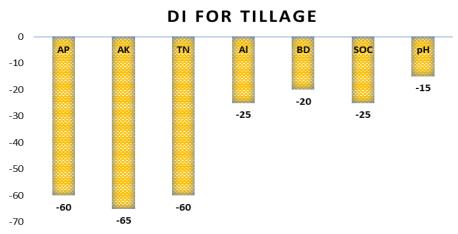

Comparison of main soil properties under different land management

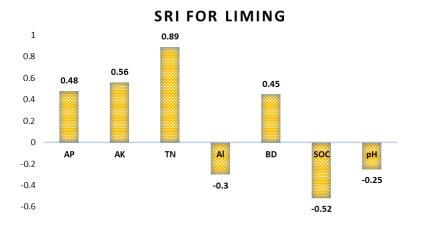


%

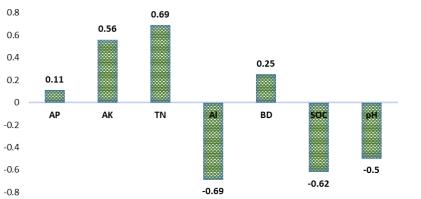

soc,

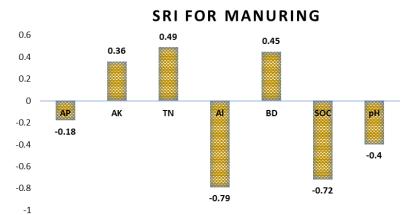



Degradation index of different soil quality parameters

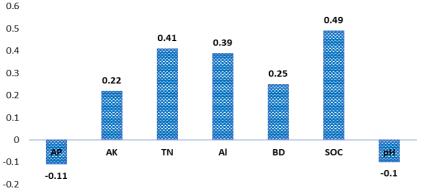


DI FOR MANURING





Resistance index of different soil quality parameters



SRI FOR RESIDUE INCORPORATION

SRI FOR TILLAGE

SUMMARIZING:

- Taking into account the soil quality and health determinant indices, applied agricultural practices ranked as follows: manuring > residue management > reduced tillage > liming.
- The results obtained showed that soil where manuring was applied had higher value of soil quality parameters such as: organic matter, total nitrogen and available phosphorus and potassium contents.
- Soil tillage and liming was determined as a measures which managementinduced changes are large enough to have the potential to reduce soil degradation.

Thank you for your attention...

