SANCHO'S THIRST

the effects of cover crops on multiple ecosystem services in woody crops of <u>semiarid areas</u>

Marques, Maria Jose^{1*}, Sastre, Blanca², Vaudour, Emmanuelle³, Baghdadi Nicolas⁴, Seddaiu, Giovanna ⁵, Fouad, Youssef ⁶ & Hatté, Crhistine ⁷

¹ Universidad Autónoma de Madrid, Madrid, Spain
 ² Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario. Alcalá de Henares, Spain
 ³ AgroParisTech, Palaiseau, France
 ⁴ French National Institute for Agriculture, Food and Environment, Montpellier, France
 ⁵ University of Sassari, Sassari, Italy
 ⁶ Institut Agro Rennes Angers, Rennes Cedex, France
 ⁷ Silesian University of Technology, Gliwice, Poland

Annual Science Days Riga. 2023

Gustave Doré, 1863

Index

- Current business as usual (BAU) management in woody crops. Consequences in soils
- 2. Benefits of cover crops (CC)
- Implementation of CC in semiarid lands
- 4. Objectives SANCHO'S THRIST
- 5. Partners and Tasks

1.BAU. Consequences

Ploughing (2 to 6 times per year, 15 to 30 cm depth)

- Bare soil
- Weak soil structure
- Low SOC
- Erosion
- Nutrient and water loss

In the long term:

- Low productivity
- Land Abandonment and poverty

2 . Benefits of Cover Crops

What is a CC?

One of the management practices to improve soil protection and soil health

In woody crops (olive orchards, vineyards, almond orchards etc.) they can be:

sown grasses, legumes (o mixed) or spontaneous

- In the middle of the strips
- Alternate strips
- Aromatic plants/shrubs
- Covering the whole area

Mulching with wood chips or shredded wood

The European Commission includes this practice for the CAP in 2023.

Area under **olive trees** in the EU \rightarrow 4.6 Mha Spain (2.5 Mha), Italy (1.4 Mha)

Area under **vineyard** in the EU → 3.2 Mha Spain (0.9 Mha), Italy (0.7 Mha)

Balance of benefits

Cover crops

- Water deficit for quality wines 1.
- 2. **Erosion** control
- 3. Promote infiltration
- Increase SOM 4.
- 5. Improve soil structure
- Improve biodiversity 6.
- Facilitate workability 7.
- 8. Save money

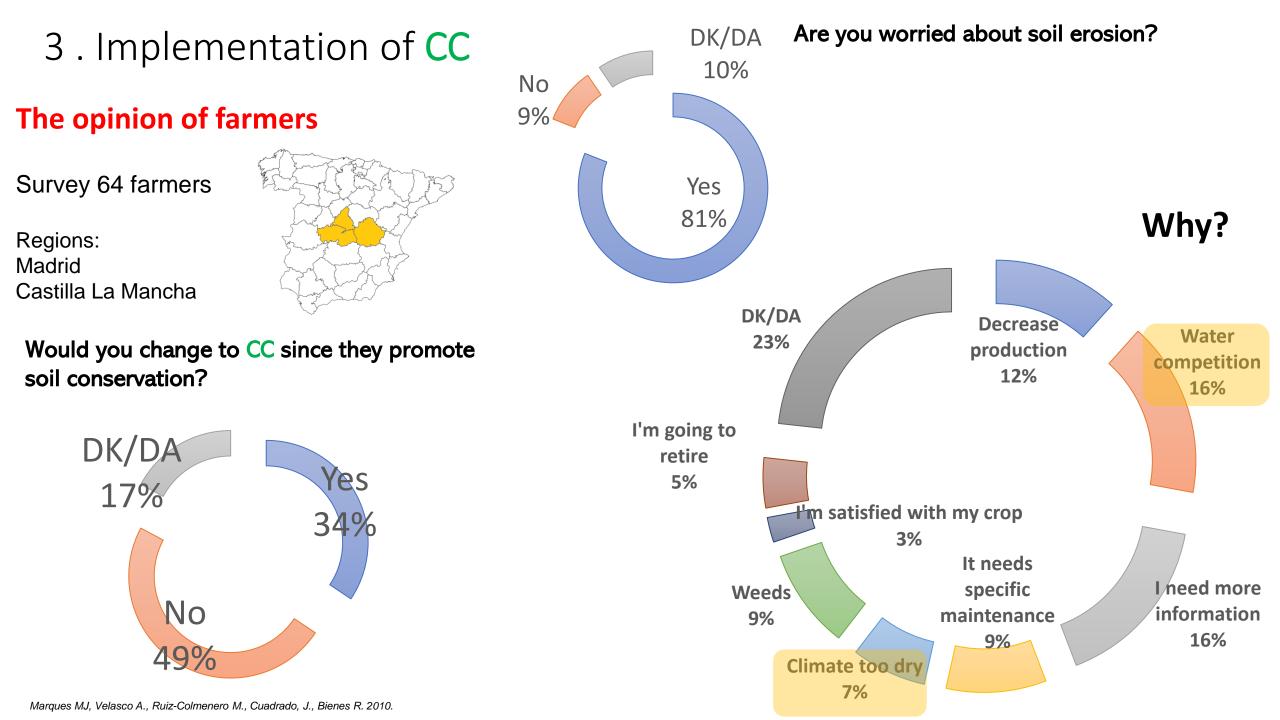
Wine or Oil quality? not clear

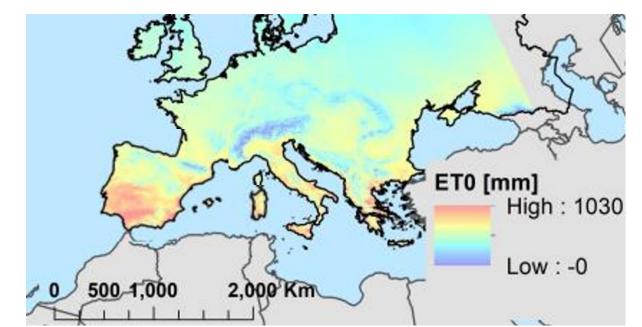
- Traditional and well known 1.
- In general, increase production 2.
- Maintain soil moisture in spring 3.

Napa Valley, CA

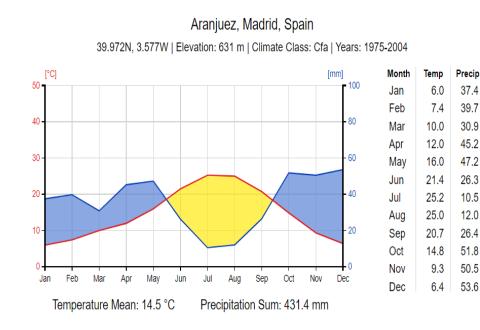
500-750 mm y⁻¹

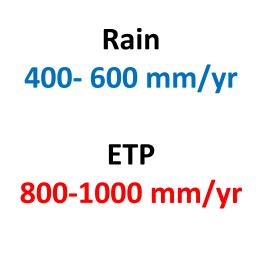
Italy

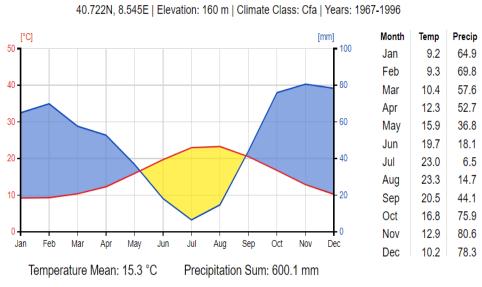

648 - 860 mm y


(Gristina et al.; 2005; Novara

et al., 2011)


France 650 mm y⁻¹ (Corbane et al., 2008) to 1000 mm y⁻¹


(Blavet et al., 2009)



Central Spain

Sardinia, Italy

Sassari, Sardinia, Italy

<u>Charts: https://climatecharts.net/</u> Map: 10.3390/atmos13050772

4. Objectives SANCHO'S THIRST

- What are the effects of CC for different Ecosystem Services?
- Can we see these effects by remote sensing?
- Regarding climate change adaptation/mitigation, what will happen in the future? CC vs BAU
- Can we recommend **CC** in <u>semiarid</u> areas?

5. Partners & Tasks

Location of **private vineyards and olive groves** (**30 to 40 sites**, **Spain and Italy**) to monitor soil health, with and without **CC**

Select **experimental farms (2 sites in Spain and Italy)** to measure soil health and grape and olive production and phenology over two years, with and without **CC**

To determine if **CC** promote more efficient and long-term C sequestration by the **isotopic signature of soils**

To identify and quantify the **Ecosystem Services indicators** associated with **CC**.

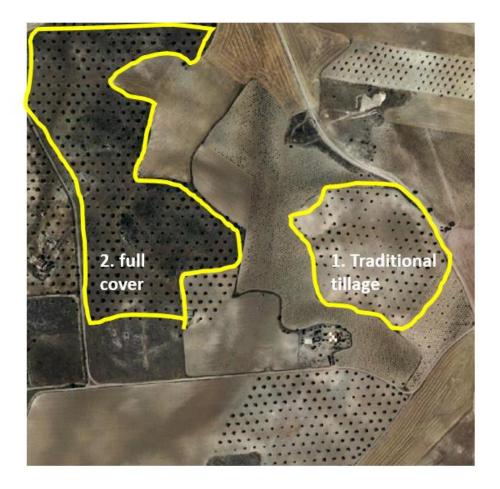
Development of a composite indicator

Æ

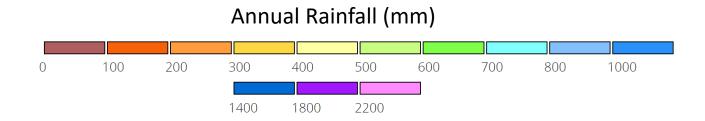
To **model over time** the influence of **CC** on Ecosystem Services, including edaphic and productive parameters, in different climate change scenarios

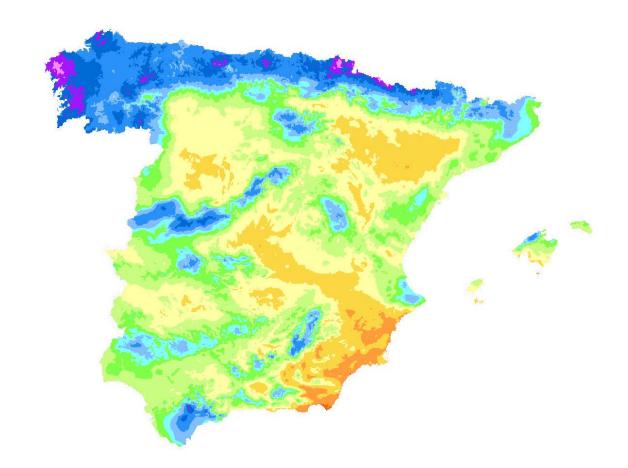
To **improve remote sensing tools**, to map SOC & water content, considering disturbing physical-chemical factors

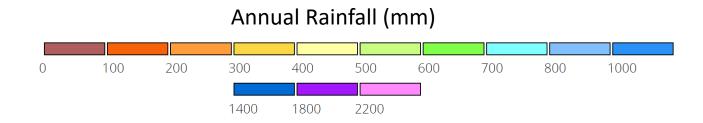
SOM characterization, SOC, forms of N
Available water

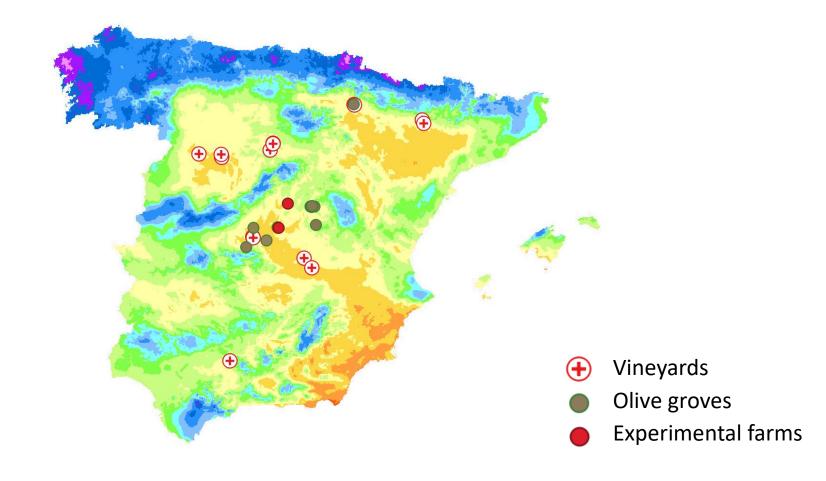

- Mineral composition
- Spectro radiometric analysis
- Biotic indicators → Enzymatic Activity
- Isotopic signatures → ¹³C and/or ¹⁵N and ¹⁴C on bulk fraction
- Provisioning
- Regulating
- Cultural
- Support
- Experimental farms: Phenological cycle of vine and olive tree (flowering, fruit set, development, ripening, harvest, dormancy) by Growing Degree Days GDD
- Influence of texture
- Influence of iron oxides
- Monitoring and influence of soil moisture
- Influence of rougness
- + Video documentary and MOOC

Dissemination and demonstration campaigns


Location of **private vineyards and olive groves** (**30 to 40 sites**, **Spain and Italy**) to monitor soil health, with and without **CC**


Select **experimental farms (2 sites in Spain and Italy)** to measure soil health and grape and olive production and phenology over two years, with and without **CC**




SAMPLING SITES

Contact farmers with CC (many years)
 Sample the CC plot
 Sample a TILLED plot around

Experimental farms

Finca El Encín, Alcalá de Henares Viticulture Finca La Chimenea, Aranjuez Olive growing

Thank you for your attention

igar Quixote, Ciudad Real

Provisioning services

Goods produced or provided by ecosystems

- Food
- Fuel wood
 - Fiber
 - Timber

Regulating services

Benefits from regulation of ecosystem processes

- Water partitioning
- Pest regulation
- Climate regulation
 - Pollination

Cultural services

Nonmaterial benefits from ecosystems

- Spiritual
- Recreational
 - Aesthetic
- Educational

Support services

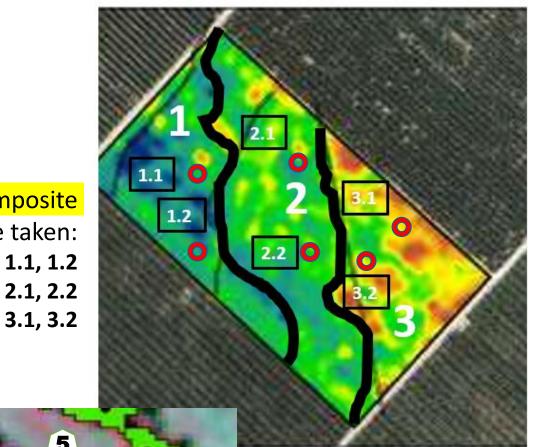
Factors necessary for producing ecosystem services

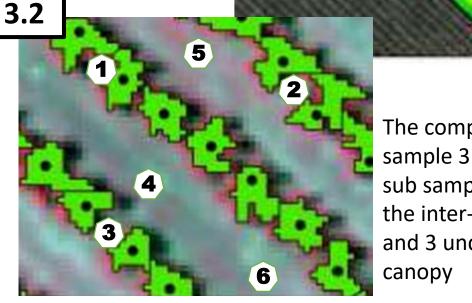
- Hydrological cycle
 - Soil formation
- Nutrient cycling
- Primary production

Source: Adapted from MEA 2003.

Example.

The colors of the plot represent different values for NDVI. According to this indicator this plot could be divided in three stratums 1, 2 and 3 (this is the most complex alternative, homogeneous plots with one stratum are preferable)


> At each stratum, two composite samples should be taken:


Each one of these composite samples is obtained with 6 sub-samples, for example 3.2

Each sub-sample has to be sampled at 0-10 cm depth 10 to 30 cm depth

Bulk density samples in this case will be: 2 per stratum and depth, so 3 stratum x 2 samples x 2 depths = 12 cylinders

This plot will result in this number of laboratory analysis: 3 stratums x 2 composite samples x 2 depths = 12 bags

The composite sample 3.2 has 6 sub samples, 3 in the inter-row and 3 under the