

"Soil futures - emerging drivers and needs of soil management and soil services"

Katharina Heming EJP Soil Science Days 2024

So much, and:

- Agricultural management soil interaction
- Socio-economic perspectives; stakeholder involvement
- Ontology common language hamonisation of concepts and methods
- Data management shared knowledge network
- Early career network
- Soil enthusiasm

.... and much more

Why is soil perceived as relevant?

time

Soil in socio-economic system

Chowdhury et al., SOLO D3.1, 2024

Agriculture: drivers of technologies and practices affecting soil health objectives

Foresight

Barriers of today, opportunities for tomorrow?

Emerging drivers of soil management

Emerging drivers affecting agricultural practices

Foresight on emerging soil management: signal strength and time frame

Techen & Helming 2019. BonaRes report

Trade-off of soil improving practices

>

zalf.

Strauss et al., 2023. Agronomy for Sustainable Development

Energy consumption of different management practices

1000 MJ/ha

Rotation: CR 1: wheat-barley CR 2: wheat-barley-rape CR 3: barley-wheat-rape-beanwheat-rye

Future Agriculture? Uncertain, diverging visions

Agroecology

http://patrickwhitefield.co.uk/wp-content/uploads/2015/02/mulch-14-1024x682.jpg

High-tech large scale

https://www.techiexpert.com/ wpcontent/uploads/2019/09/IO T-in-Agriculture.jpg

https://www.thomasnet.com/insights/willagricultural-ai-become-the-future-of-farming/

Busines as usual

K. Helming

Agroforestry

https://www.thuenen.de

High Tech small scale

https://www.zalf.de

care farming

https://www.sustainweb.org/resources/images/food_growing/com munity_supported_agriculture.jpg

Digitalisation

Farmers perception of digitalised agriculture

MacPherson et al., in revision

Farmers perception of digitalised agriculture

MacPherson et al., in revision

Farmers perception of digitalised agriculture

MacPherson et al., in revision

18

- Deal with uncertainties \geq
- Future threats & challenges
- Windows of opportunity
- Solutions for tomorrow \geq

Scenarios

(wildcard

and plausible)

Why scenarios?

Shared Socioeconomic Pathways

- Developed in the climate change research community (O'Neill et al. 2017)
- "Pathways in the 21st century"
- Combining alternative futures of climate and society
- SSP storylines, including specifications for land use, SSP public data base at IIASA (modelling results)
- Used in combination with greenhouse gas emmission trajectories (RCPs)

Seite 20 (O'Neill et al. 2017 in Global Environmental Change, doi: 10.1016/j.gloenvcha.2015.01.004)

Shared Socio-economic Pathways (SSP) scenario framework Adoption and experiences

Libniz Association J

- Widely adopted: used as framework in other settings
- Regional and sectoral specifications

Pros:

- Consistency, Comparability, clarity
- Acceptance and visibility

Challenges:

- Applicability at regional and local scales
- Capture relevant perspectives and uncertainties
- Keep scenarios up to date
- Improve relevancy: capacity building, communication, accessibility, stakeholder involvements

(O'Neill et al. 2020 Nature Climate Change)

Eur-Agri-SSPs: Shared Socio-economic Pathways for European agriculture and food systems

Stakeholder Workshops for specifying SSP storyline elements for soil management

- Apply SSP protocol of Eur-Agri SSPs
- 5 online participatory scenario workshops, 2020/2021
 - 2 English workshops + outreach/international collaboration
 - 3 German workshops
- **90** participants from 6 stakeholder groups:
 - State/Policy
 - Civil societies
 - Agricultural associations
 - Enterprises
 - Farmers
 - Academia

Focus on technology and environment

Libri

- 1. Population and urbanization*
- 2. Economy*
 - 3. Policies and institutions*
- ခြို့နဲ့ 4. Technology
 - 5. Environment and natural resources

Results: Environment and Natural Resources

Strong decrease Te		ndency to decrease	Remains	Tendency to increase		Strong increase		
Storyline elements				SMP1	SMP2	SMP3	SMP4	SMP5
Soil managemen practices focusing on	ement es g on	Agricultural landscape diversity (i.e. field size and transition zones) Integration of intercropping and agroforestry Diversity of crop varieties Diversity of crop varieties Diversity of crop rotations incl. cover crops and legumes Subsoil management Machinery weight and contact stresses Intensity of tillage Application of precision agricultural practices (e.g. plant- or site-specific) Use of pesticides						
		Use of organic inputs, incl. inoculation and new fertilizers from recycled nutrients Use of mineral inputs Use of irrigation						
Resour depletio induced	rce on d by	Amount of agricultu (e.g. urban areas, s Amount of agricultu transferred to natur conservation areas	ral land take streets etc.) ral land e					
Status of function	of soil 1s	Biomass production Storage and recyclin nutrients Filtering and storag Habitat for biologica activity/Biodiversity Carbon sequestrati	n ing of e of water al on					
Occurre of invas species	ence sive	Amount of weeds Amount of pests Number of disease water-, air-born) Wildlife migration th farms Affecting cultural lai	s (soil-, nrough the ndscapes					

- SMP1 Sustainable path
- SMP2 Slow change path
- SMP3 Nationwide path
- SMP4 Divided path
- SMP5 High-tech path

Bayer, Evgrafova, Helming et al., in prep

German Soil Management Pathways (DE-SMPs):

5: High-tech industrial soil management in a globalized environment 3: Soil management to sustain national food and energy security in a highly isolated environment

2: Slow changes in the current soil management practices

1: Sustainable soil management in a green and diverse environment 4: Soil management in unequal environments of large-scale industrial farms and local agro-food initiatives

Challenges for adaptation

Key messages from the Soil Management Pathways

- Socio-technical innovations and technology uptake are improving strongest in SSP1 (high-tec) and SSP5 (sustainable), but the implications for sustainable soil management are different across the SSPs
- Policies and international trade-regulations and standards determine in how far innovations only improve (economic) efficiency or also sustainability
- Diversification is key in SSP1 (sustainable): rotation, intercrops, agroforestry, value chain diversification
- The food value chain, consumption and dietary choices strongly determine farmers room for manoeuvre on sustainable soil management
- Mixed message on de-globalisation: meeting national needs may increase production and put additional pressure on soil; but producing fodder protein may actually be of benefit for soil health

- SMP1 Sustainable path
- SMP2 Slow change path
- SMP3 Nationwide path
- SMP4 Divided path
- SMP5 High-tech path

Key messages from the Soil Management Pathways

- BAU (SMP2) was not a desired future;
- Sustainable path (SMP1) integrated technological with societal innovation and consumer cooperation
- High-tech path (SMP5) used technology for improving efficiency but mostly ignored diversification
- Divided path (SMP4) was often seen as representation of the current state
- Nationwide path (SMP3) scored worst on environmental health
- Diversification key point (integration of high-tech with biological methods)

- SMP1 Sustainable path
- SMP2 Slow change path
- SMP3 Nationwide path
- SMP4 Divided path

5

Challenges for mitigation

SMP5 – High-tech path

3

Stakeholder based Soil Needs Assessment in Europe

PREP SOIL

zalf.

Soil needs:

"what soil needs from humans to serve human needs"

PREPSOIL Deliverable D2.1

Stakeholder based Soil Needs Assessment in Europe

PREP Snii

Stakeholder workshops

Brandenburg, Germany

Annual cropping

Stakeholder groups involved

> 500 individuals in total

PREPSOIL Deliverable D2.1

Drivers of soil management

••••

PREP

PREPSOIL Deliverable D2.1

Soil needs in Agriculture

Soil improving management solutions are available but barriers are high

- Remove economic, policy and knowledge barriers to soil improving management
- Redirect policy (CAP) to support provision of ecosystem services alongside production
- Integrate agro-ecological principles with modern technologies in a systems aproach
- Acknowledge cultural identity, ownership, and a sense of belonging to an area.
- Engage consumers into the transformation
- Consider path dependencies and land use history

- Understanding **future** conditions helps to identify the **room for manoeuvre** for sustainable soil management
- Soil improving management requires **systemic changes** at the level of farming systems (and food system), not single interventions
- **Consumers** and **value chain** play important role in transformation, alongside technology and policy
- Solutions are **site specificities**, but do not get lost in details when communicating

Planetary boundaries: where is the soil?

Soil is more than SOC

Richardson et al., 2023, adapted

https://www.pik-potsdam.de/de/produkte/infothek/planetare-grenzen/planetare-grenzen

www.zalf.de

Thank you for your attention

