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N,O has the strongest radiative forcing of all greenhouse gases.

N,O comes mainly from soils and its increase is related to N fertilizer use.

The Good News: Theoretically, according to the GHG inventories, anthropogenic soil N,O @
emissions in the European Union have decreased by 17% since the 1990s (EEA, 2022).
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The excess of nutrients in the
environment is a major source of
air, soil and water pollution,
negatively impacting biodiversity
and climate. The Commission will
act to:

v'reduce nutrient losses by at least
50%, while ensuring no
deterioration on soil fertility.

v'reduce fertilizer use by at least
20% by 2030.

Organic farming is an
environmentally-friendly practice
that needs to be further developed.

The European Commission will
boost the development of EU
organic farming area with the aim
to achieve 25% of total farmland
under organic farming by 2030.

(Austria: already 27 %)
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As part of the European Agricultural Funds for Rural Development (EAFRD), Austria introduced an agri-
environmental program (OPUL) to enhance organic farming and, as part of the implementation of the
Nitrate Directive (EC, 1991), incentives to reduce N fertilisation rates in 1992. These objectives remain
central to the current Austrian EAFRD funds, effective from January 2023.

Organic farms have higher SOC, which }

could promote higher N,O emissions
Therefore we wanted to know P g 2

Do reduced N fertilisation and organic farming;,
1) have a positive effect on soil N,O mitigation?
2) have a negative effect on yields?
3) have a negative effect on soil N stocks and hence soil fertility?




Landscape scale DeNitrification-DeComposition model

Modeling can
refine national
greenhouse gas
inventories and
detect hotspots
of N losses.
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Haas, Klatt, Fréhlich, Kraft, Werner, Kiese, Grote, Breuer,
Butterbach-Bahl, Landscape Ecol (2013) 28: 615-636.



Material and Methods

] We modelled
15611 simulation years;
More than 5.7 mio days
Fertilization:
Cmax
-15% Model LandscapeDNDC
-25%
- climate
-
. >H g land use
Oststeirisches organic 28 '|
Huegelland Sa 0
Processing
Output
A XA
& £ *A)( B Emissions map
Marchfeld )\
( climate and management modelled in daily steps for 10 years \ . Haasetal, 2013
*https://creativecommons.org/licenses/by-sa/3.0/de/legalcode
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in Grieskirchen
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s 3 333 33 3133 " ' ' 338 138 3 -
CR1 BARL wwis WBAR WWIS €C CORN : CORN  Wwis WWIS WRAPE  CC CORN
133 A | 133 3 R T ! RN L 488 33 3
CR2 WWIS WBAR WWIS CC! CORN | CORN  Wwis WWIS WRAPE  CC CORN SOy
3 ' 443 + 3 L 2 ' 443 488 ‘38 $ 3 3
CR3 | WBAR WWIS CC  CORN CORN  WWIS WWIS WRAPE (d CORN soy WBAR wwiI
133 R T . T 22 383 P 38 , 4.3 3 122
CR4 |WWIS CC |  CORN CORN  WwiIs WWIS WRAPE CC! CORN SOy WBAR Wwwis  WBA
3 - ‘338 333 n 2 ! : 33 333 |
CR5 CORN ' CORN  WWIS WWIS WRAPE CC! CORN ' | SOY WBAR WWIS WBAR cc
3 i 383 333 ' 38 A | : ¥ ¥ 333 33 + 3
CR6 CORN  wwis WWIS WRAPE CC. CORN : | SOY WBAR wwis WBAR cc CORN
+ 3 L 449 - ! H S A 1 L 383 (A} A .
CR7 | WBAR L WWIS | WRAPE cc CORN | SOY | WBAR L WWIS WBAR CC  CORN CORN
333 48 I N 1 X TN : 33 L 3 3 3
CR8 | WWIS 'WRAPE cc CORN soy ' WBAR I WWIS WBAR (e CORN CORN BARL
3 , 3.4 + 3 348 A B | + 3 3 133
CR9 |WRAPE CC,  CORN SOy WBAR Wwis WBAR CC | CORN CORN BARL WWIS
T 3 ; '3 3 133 ‘83 - [ | 3 133 33
CR10 CORN '  SOY WBAR WWIS WBAR CC | CORN ' CORN BARL WWIS WBAR
L 43 184 33 | . N £68 33 333
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43 A N + 3 + 3 Y . R — . . (et
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BARL = summer barley; CORN = corn; WWIS =winter wheat; WBAR= winter barley; WRAPE= winter rape; SOY = soy beans; CC = catch crops (mustard);

16 — 35 crop rotations were modelled per region for each year and each soil type. Individual management steps (e.g. tillage,
seeding, fertilizer application, etc. of all crops) were compared with daily weather data and adjusted within a timespan (+/-1-14
days) given by regional farm advisors. 7
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lllustration of the temporal dynamics of cumulative sums of soil N,O emissions for the site in Grieskirchen; red line: mean of N,__,

baseline simulation, , black line: median, blue lines: quantile ranges Q25 —
Q75, purple lines: quantiles Q10 — Q90 of the 500 simulation results.
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Uncertainty range -30.8% to +50.8% shows that our modelled data are arieskirchen (GK), Oststeirisches Huegelland (OH) and

Marchfeld (MF)
robust (more than IPCC EF: uncertainty -66% to +200%)
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N,O-Nemissions (kg ha™' year™)

N,O reduction potential

Oststeirisches
Grieskirchen, Huegelland, Marchfeld,
moist occ.dry dry
A A A A B B B B C C AB AB
a b C d a b C d a b C d
10.0- 1
, s ' Reducing nitrogen fertilisation by 15% reduced
NI : N,O emissions by, on average 22%.
:
| "
. Reducing nitrogen fertilisation by 25% reduced
. N,O emissions by 39%.
8 - Organic farming reduced emissions by 60%.
N,O emission reduction potential was the
s 5 A § greatest in regions and crops (corn, vegetables)
. : . i . . ..
0.1- . with the highest emissions.
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Nmax
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Management system 9



N-budgets with different agri-
environmental measures
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Yields are only slightly
reduced by fertilizer
reduction.

Reducing nitrogen
fertilisation by 15% and 25%
the yield was reduced by 5%
and 9%, respectively.

In the organic cropping
system yield was declined
on average by 23%.

The overall N-budgets are
positive: Soil fertility is
retained.

In organic systems, the
nitrogen use efficiency was
best: >67% of N output was
found in crop yields and
little N was lost.
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1. have a positive effect on soil N,O 1. Yes: A 25% reduction in N-
mitigation? fertilization resulted in a 39%
reduction of N,O emissions.

2. negatively affect yields? 2. Slightly: A 39% reduction of

N,O emissions, was
accompanied with a 9%
reduction in yield.

. No: N-balances were still

pOSitiVE: only for organic farming in

pure cropland regions it can become critical
in the long-term.

3. negatively affect soil N stocks &~ 3
/soil fertility? @
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