

E. Haas

M. Kittinger

Policy measures effectively reduce soil nitrous oxide emissions with minor trade-offs in crop yield

C. Foldal

Sophie Zechmeister-Boltenstern¹,

Cecilie Birgitte Foldal¹, Martina Kittinger¹ & Edwin Haas²

¹University of Natural Resources and Life Sciences, Vienna, Austria

²Institute of Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany

Science for a cooler future

Why is N₂O so important?

 N_2O has the strongest radiative forcing of all greenhouse gases.

 N_2O comes mainly from soils and its increase is related to N fertilizer use.

The Good News: Theoretically, according to the GHG inventories, anthropogenic soil N₂O emissions in the European Union have decreased by 17% since the 1990s (EEA, 2022).

 $(\cdot \cdot)$

European Green Deal: Farm to Fork Strategy

reduce nutrient losses by at least
50%, while ensuring no
deterioration on soil fertility.

✓ reduce fertilizer use by at least
20% by 2030.

Organic farming is an

environmentally-friendly practice that needs to be further developed.

The European Commission will boost the development of EU organic farming area with the aim to achieve 25% of total farmland under organic farming by 2030.

(Austria: already 27 %)

Research Questions

As part of the European Agricultural Funds for Rural Development (EAFRD), Austria introduced an agrienvironmental program (ÖPUL) to enhance organic farming and, as part of the implementation of the Nitrate Directive (EC, 1991), incentives to reduce N fertilisation rates in 1992. These objectives remain central to the current Austrian EAFRD funds, effective from January 2023.

Therefore we wanted to know

Organic farms have higher SOC, which could promote higher N₂O emissions

Do reduced N fertilisation and organic farming,

- 1) have a positive effect on soil N₂O mitigation?
- 2) have a negative effect on yields?
- 3) have a negative effect on soil N stocks and hence soil fertility?

Landscape scale DeNitrification-DeComposition model

Modeling can refine national greenhouse gas inventories and detect hotspots of N losses.

Dataflux of LandscapeDNDC for site/regional input: 80 Parameters modelled

Crops

Haas, Klatt, Fröhlich, Kraft, Werner, Kiese, Grote, Breuer, Butterbach-Bahl, Landscape Ecol (2013) 28: 615-636.

Material and Methods

Conventional crop rotation setup

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
	+ +	+++	++	+++	+ +	+ +	+++	+++	++	+ +
CR1	BARL	wwis	WBAR	wwis co	CORN	CORN	wwis v	ywis v	WRAPE CC	CORN
CR2	WWIS	WBAR	wwis cc	CORN	CORN	wwis v	wis N	WRAPE CC	CORN	SOY
CR3	WBAR	wwis cc	CORN	CORN	wwis v	WIS	WRAPE CC	CORN	SOY V	vbar www
CR4	WWIS CC	CORN	CORN	wwis w	wis N	WRAPE CC	CORN	SOY	WBAR	WWIS WBAR
CR5	CORN	CORN	wwis v	vwis v	WRAPE CC	CORN	SOY	WBAR	wwis w	BAR CC
CR6	CORN	wwis N	wwis	WRAPE CC	CORN	SOY	WBAR	wwis w	BAR CC	CORN
CR7	WBAR	WWIS	WRAPE C	CC CORN	SOY	WBAR	WWIS	WBAR CC	CORN	CORN
CR8	WWIS	WRAPE C	CORN	SOY	WBAR	wwis	WBAR CC	CORN	CORN	BARL
CR9	WRAPE CC	CORN	SOY	WBAR	wwis w	BAR CC	CORN	CORN	BARL	WWIS
CR10	CORN	SOY	WBAR	wwis w	BAR CC	CORN	CORN	BARL	wwis v	VBAR
CR11	SOY	WBAR	wwis w	VBAR CC	CORN	CORN	BARL	wwis v	VBAR	wwis
CR12	WBAR	WWIS	WBAR CC	CORN	CORN	BARL	WWIS	WBAR	WWIS CO	CORN
CR13	WWIS	WBAR CC	CORN	CORN	BARL	WWIS	WBAR	wwis co	CORN	CORN
CR14	WBAR CC	CORN	CORN	BARL	WWIS	WBAR	wwis co	CORN	CORN	WWIS
CR15	CORN	CORN	BARL	WWIS	WBAR	wwis co	CORN	CORN	WWIS	WBAR
CR16	CORN	BARL	wwis	WBAR	wwis co	CORN	CORN	WWIS	WBAR	WRAPE CC

BARL = summer barley; CORN = corn; WWIS = winter wheat; WBAR= winter barley; WRAPE= winter rape; SOY = soy beans; CC = catch crops (mustard);

16 – 35 crop rotations were modelled per region for each year and each soil type. Individual management steps (e.g. tillage, seeding, fertilizer application, etc. of all crops) were compared with daily weather data and adjusted within a timespan (+/-1-14 days) given by regional farm advisors.

Uncertainty Analysis

Illustration of the temporal dynamics of cumulative sums of soil N₂O emissions for the site in Grieskirchen; red line: mean of N_{max} baseline simulation, grey lines: realization of the 500 parameter samples, black line: median, blue lines: quantile ranges Q25 – Q75, purple lines: quantiles Q10 – Q90 of the 500 simulation results.

Uncertainty range -30.8% to +50.8% shows that our modelled data are robust (more than IPCC EF: uncertainty -66% to +200%)

Overall result distribution of annual N_2O emissions for Grieskirchen (GK), Oststeirisches Huegelland (OH) and Marchfeld (MF)

N₂O reduction potential

Reducing nitrogen fertilisation by 15% reduced N_2O emissions by, on average **22%**.

Reducing nitrogen fertilisation by 25% reduced N_2O emissions by **39%.**

Organic farming reduced emissions by **60%**.

N₂O emission reduction potential was the greatest in regions and crops (corn, vegetables) with the highest emissions.

N-budgets with different agrienvironmental measures

Yields are only slightly reduced by fertilizer reduction. Reducing nitrogen fertilisation by 15% and 25% the yield was reduced by 5% and 9%, respectively.

In the organic cropping system yield was declined on average by 23%.

The overall N-budgets are positive: Soil fertility is retained.

In organic systems, the nitrogen use efficiency was best: >67% of N output was found in crop yields and little N was lost.

Do reduced N fertilisation and organic farming

2. negatively affect yields?

- Yes: A 25% reduction in Nfertilization resulted in a 39% reduction of N₂O emissions.
- Slightly: A 39% reduction of N₂O emissions, was accompanied with a 9% reduction in yield.

• •

3. No: N-balances were still

positive: only for organic farming in pure cropland regions it can become critical in the long-term.

Received: 30 October 2023 Revised: 31 January 2024 Accepted: 1 March 2024

DOI: 10.1111/ejss.13475

RESEARCH ARTICLE

Policy measures effectively reduce soil nitrous oxide emissions with minor trade-offs in crop yield

Cecilie Birgitte Foldal^{1,2} | Martina Kittinger¹ | Edwin Haas³ | Sophie Zechmeister-Boltenstern¹

Thank you for your aftention!