

A simple profile-scale model of soil organic matter turnover accounting for physical protection and priming: model description and sensitivity analysis

Elsa Coucheney, Anke Herrmann and Nicholas Jarvis

Department of Soil and Environment
Swedish University of Agricultural Sciences
750 07 Uppsala, Sweden

MaxRootC: WP6

Task 6.2.3

A sensitivity analysis to explore which processes matter most for soil C dynamics in contrasting soil types (e.g. structured clays soils vs. sandy soils)

What is most important?

..... OM inputs (total), partitioning between roots and shoots, microbial carbon use efficiency and priming, soil structure, tillage intensity, root depth and distribution?

USSF (**U**ppsala model of **S**oil **S**tructure and **F**unction)

Schematic: Tino Colombi, Nick Jarvis

Strengths

Feedbacks between soil and crop properly represented, including the effects of soil structure dynamics

Limitations

- Slow to run (5-10 minutes per year)
- Complex (100+ parameters)

ICBM-P⁴ (**P**hysical **P**rotection and **P**riming in a soil **P**rofile)

Schematic: Tino Colombi, Nick Jarvis

<u>Advantages</u>

- Fast (seconds)
- Simple (15 parameters)
- Solved analytically for steady-state stocks

ICBM-P⁴ (**P**hysical **P**rotection and **P**riming in a soil **P**rofile)

Advantages

- Fast (seconds)
- Simple (15 parameters)
- Solved analytically for steady-state stocks

.... but soil-plant feedbacks mediated via soil hydrological processes are lost ...

Please see our poster in session C1 for an overview of the ICBM-P⁴ model and the results of a sensitivity analysis and "reality-check"