

LIFE Newlife4drylands PROJECT

April, 18th 2023

<u>Cristina Tarantino</u> Earth Observation Group Bari, Italy

Remote sensing-oriented nature-based solutions towards a NEW LIFE FOR DRYLANDS

LIFE20 PRE/IT/000007 - PREPARATORY PROJECT

End date

30 June 2023

EXTENDED TO

30 JUNE 2024

OBJECTIVES

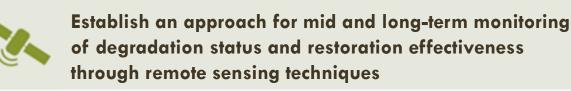
Project Information NEWLIFE4DRYLANDS

Grant Agreement LIFE20 PRE/IT/000007 https://www.newlife4drylands.eu

Start date 1 January 2021

Funded under

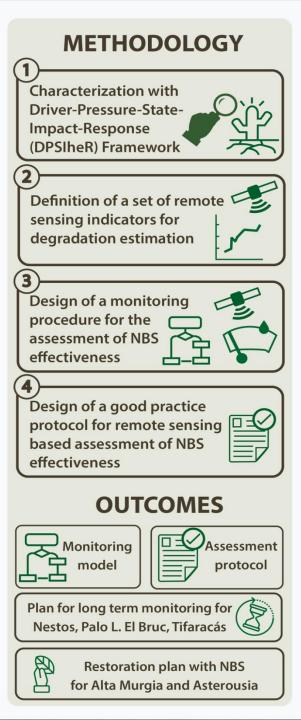
LIFE Programme


Overall budget € 845 748,00

EU contribution € 490 073,00

Coordinated by CONSIGLIO NAZIONALE DELLE RICERCHE Italy

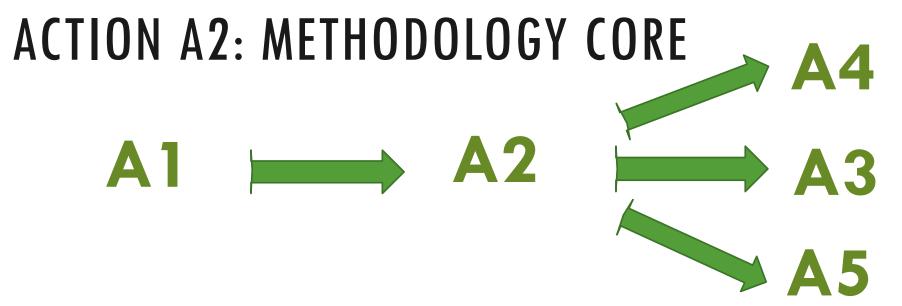
info@newlife4drylands.eu



Improve vegetation cover and productivity through Nature Based Solutions in degraded or vulnerable areas where degradation processes are undergoing

Provide clear, specific and costless assessment of the restoration process useful for decision-making

 The 6 study sites represent a wide variety of typical ecosystems in the Mediterranean landscape as drylands, coastal or mountainous, with high or low extension, threatened from different pressures causing LD



Study Site	Location	Ecosystem type	Dominant Ecosystem
Alta Murgia	Southern Italy		Grassland
Tifaracas	Gran Canaria, Spain	Drylands	Shrublands
El Bruc	Catalonia, Spain		Forest
Palo Laziale	Central Italy	Coastal	Forest
Nestos	Greece	coustar	Riparian Forest
Asterousia	Greece	Mountain	Shrublands

 The analysis by RS data doesn't result site-dependent but specific for Mediterranean ecosystems identifying guidelines for the monitoring of their Land Degradation status

5 ACTIONS:

- > A1: Characterization, main pressures and threads framework for each site
- > A2: Extraction of indices/indicators from remote sensing data for assessing land degradation status
- > A3: Monitoring Model for the assessment of NBS effectiveness
- A4: Long-Term Monitoring for restoration cases already started within previous projects and Restoration Plan with NBS for Alta Murgia site (southern Italy)
- > A5: Definition of a good practices protocol for the assessment of NBS effectiveness

Main challenges addressed:

Trying to work at a local scale

(free available products, e.g., Copernicus services at a pan-European scale results poorly reliable)

 \rightarrow to meet the needs of local decision-makers

• do not searching for new methodologies

 \rightarrow decline on a local scale those well known in literature;

using free available open satellite data as much as possible.

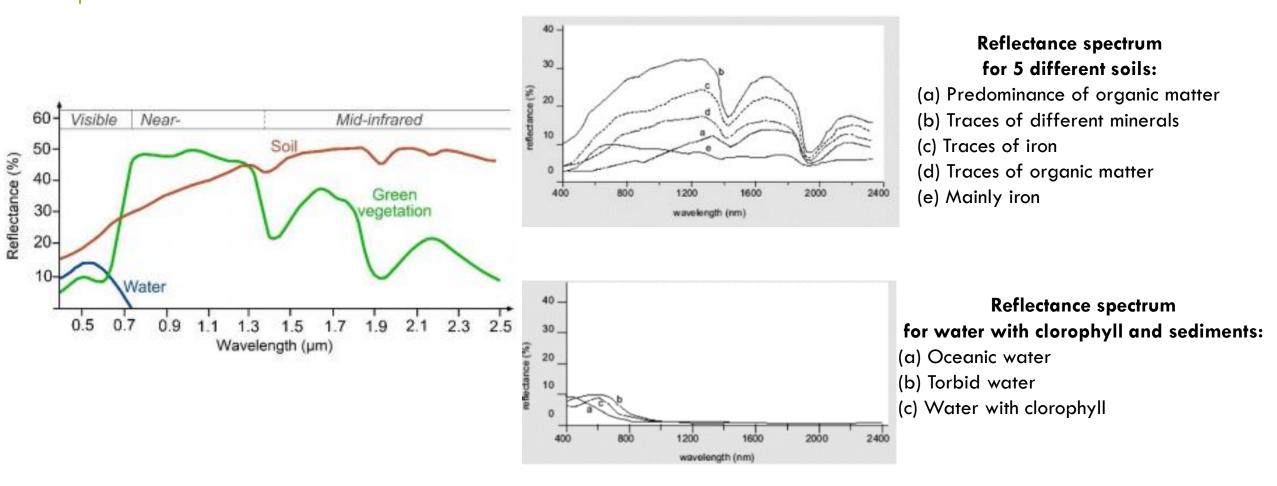
FREE-AVAILABLE SATELLITE DATA SPECTRAL BANDS

	S	entinel-2A MS	I	L	andsat 8 OLI	
Band	Spectral region	Wavelength range (nm)	Resolution (m)	Spectral region region	Wavelength range (nm)	Resolution (m)
B1				Blue	435-451	30
B2	Blue	458-523	10	Blue	452-512	30
B3	Green peak	543-578	10	Green	533-590	30
B4	Red	650-680	10	Red	636–673	30
B5	Red edge	698-713	20	NIR	851-879	30
B6	Red edge	733–748	20	SWIR1	1566-1651	30
B7	Red edge	773–793	20	SWIR2	2107-2294	30
B 8	NIR	785-899	10			
B8A	NIR narrow	855-875	20			
B11	SWIR	1565-1655	20			
B12	SWIR	2100-2280	20			

SATELLITE REMOTE SENSING CAN GIVE GREAT CONTRIBUTIONS TO LAND DEGRADATION MONITORING

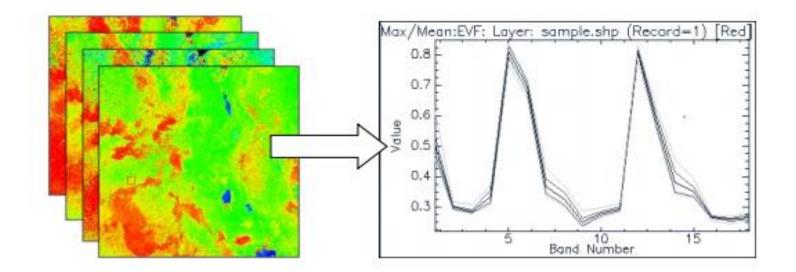
Remote Sensing is based on the extraction of information acquired at a certain distance analysing the reflected or emitted electromagnetic radiation from a target (interaction radiation-matter)

Potentialities:


1) collecting the signal from the investigated target within a wide range of wavelengths, not only in the visible spectrum, highlighting properties of matter invisible to the human eye

2) acquiring repeated series imagery of the same scene in order to capture changes over time: observations allow for past, present and near-realtime monitoring of Earth processes

3) analysing phenomena at different spatial scales of detail and investigating wide areas (rather than expensive in-situ exploration) seven inaccessible or difficult to reach


RS can see no more than human eyes but rather better through integration of spatial, temporal and spectral information.

SPECTRAL RESPONSE OF DIFFERENT TARGET

The different reflectance response can be used to differentiate different targets

EXTRACTION OF INFORMATION FROM REMOTE SENSED DATA: COMBINATION OF SPECTRAL AND TEMPORAL DOMAIN

Extraction of the phenologic profile from the temporal profile of an NDVI time series

List of Indices/Indicators from Remote Sensed (RS) data useful for assessing soil degradation/desertification status in the NL4DL study sites

Indices (R is the reflectance at the wavelengths (nm) denoted by the subscripts)

Туре	Acronym	Description	Generic Formula	Formula by Sentinel-2 bands	Reference	Application	By RS data	Degradation Processes in NL4DL study sites	By CNR-IIA
	NDVI	Normalized Difference Vegetation Index	$\frac{R_{800} - R_{670}}{R_{800} + R_{670}}$	NIR – Red NIR + Red	Rouse et al. (1974); Zarco-Tejada et al. (2001)				
	GNDVI	Green Normalized Difference Vegetation Index	$\frac{R_{000} - R_{550}}{R_{000} + R_{550}}$	NIR – Green NIR + Green	Gitelson et al. (1996)				
	MSAVIz	Modified Soil-Adjusted Vegetation Index	$\frac{2R_{800} + 1 - \sqrt{(2R_{800} + 1)^2 - 8(R_{800} - R_{670})}}{2}$	$\frac{2*\textit{NIR}+1-\sqrt{(2*\textit{NIR}+1)^2-8*(\textit{NIR}-\textit{Red})}}{2}$	Qi et al. (1995)				
	OSAVI	Optimized Soil-Adjusted Vegetation Index	$(1+0.16)\frac{R_{900}-R_{670}}{R_{900}+R_{670}+0.16}$	$(1+0.16)\frac{NIR-Red}{NIR+Red+0.16}$	Rondeaux et al. (1996)			Decline in Biodiversity;	
	NDRE	Normalized Difference RedEdge	$\frac{R_{1660} - R_{700}}{R_{960} + R_{700}}$	NIR _{narrow} - RedEdge1 NIR _{narrow} + RedEdge1	Zhang et al. (2019)	presence and activity of green vegetation	ŕ	Decline in Biomass; Decline in vegetation community functioning;	
Vegetation Indices	ARVI	Atmospherically Resistant Vegetation Index	$\frac{R_{800} - [R_{670} - (R_{450} - R_{670})]}{R_{800} + [R_{670} - (R_{450} - R_{670})]}$	$\frac{NIR - [Red - (Blue - Red)]}{NIR + [Red - (Blue - Red)]}$	Bannari et al. (1995)		Yes	Decline in vegetation cove	r Yes
	EVI ₂	Enhanced Vegetation Index 2	$2.5 \frac{R_{800} - R_{670}}{R_{800} + 2.4 R_{670} + 1}$	$2.5 \frac{NIR - Red}{NIR + 2.4Red + 1}$	Jiang et al. (2008)				
	REP	RedEdge Position	$\frac{705+35\left(\frac{\frac{R670+R780}{2}\right)-R700}{R740+R700}}{R740+R700}$	$\frac{705+35}{\frac{\left(\frac{\text{Red}+\text{REdEdge2}}{2}\right)-\text{RedEdge1}}{\text{RedEdge2}+\text{RedEdge1}}}$	Main et al. (2011)				
	NBR	Normalized Burn Ratio	$\frac{R_{860} - R_{2200}}{R_{860} + R_{2200}}$	NIR _{narrow} - SWIR2 NIR _{narrow} + SWIR2	Key et al. (2002)				
	NBR2	Normalized Burn Ratio 2	$\frac{R_{1600} - R_{2200}}{R_{1600} + R_{2200}}$	SWIR1 - SWIR2 SWIR1 + SWIR2	Key et al. (2002)	Burned areas detection		Forest fires	

	NDWI1	Normalized Difference Water Index 1	$\frac{R_{000} - R_{2130}}{R_{000} + R_{2130}}$	NIR – SWIR2 NIR + SWIR2	Gao, 1996	water content of leaves		Decline in vegetation	
Water Indices	NDWI ₂	Normalized Difference Water Index 2	$\frac{R_{550} - R_{900}}{R_{550} + R_{900}}$	Green - NIR Green + NIR	McFeeters (1996)	water content in water	Yes	Hydrological modifications	Yes
	MNDWI	Modified Normalized Difference Water Index	$\frac{R_{550} - R_{2130}}{R_{550} + R_{2130}}$	Green-SWIR2 Green+SWIR2	Xu (2006)	bodies		Hydrological modifications	
	NDSI	Normalized Difference Soil Index	$\frac{R_{1650} - R_{560}}{R_{1650} + R_{560}}$	SWIR1 - Green SWIR1 + Green	Deng et al. (2015)				
Soil Indices	NDBSI	Normalized Difference Bare Soil Index	$\frac{R_{1650} - R_{860}}{R_{1650} + R_{860} + 0.001}$	SWIR1 – NIRnarrow SWIR1 + NIRnarrow + 0.001		identify areas where soils are dominant	Yes	Soil quality degradation	Yes
	в	Bare Index	$\frac{(R_{1650} + R_{670}) - (R_{900} + R_{450})}{(R_{1650} + R_{670}) + (R_{900} + R_{450})}$	$\frac{(SWIR1 + Red) - (NIR + Blue)}{(SWIR1 + Red) + (NIR + Blue)}$	Chen et al. (2004)				
	SSI1	Soil Salinity Index-1	$\sqrt{R_{[520:600]} * R_{[630:690]}}$	$\sqrt{Green * Red}$	Khan et al. (2001); Yahiaoui et al. (2015)				
	SSI2	Soil Salinity Index-2	$2 * R_{[520:600]} \cdot (R_{[680:690]} + R_{[770:900]})$	2 * Green-(Red+NIR)	Douaoui and Lepinard (2010); Yahiaoui et al. (2015)				
Soil Salinity Indices	SSI3	Soil Salinity Index-3	$\sqrt{R^2_{[630.690]} + R^2_{[520.600]}}$	$\sqrt{\text{Red}^2 + \text{Green}^2}$	Douaoui et al. (2006); Yahiaoui et al. (2015)	identification of degree of soil salinization	Yes	Soil Salinization	Yes
	SI	Salinity Index	$\frac{R_{[530:590]} * R_{[640:670]}}{R_{[450:510]}}$	Green* Red Blue	Elhag et al. (2016)				
	SASI	Soil Adjusted Salinity Index	$\frac{R_{[630:690]}}{100 * R_{[450:520]}^2}$	Red 100*Blue ²	Yahiaoui et al. (2015)				
Drought/Dryness	NDDI	Normalized Difference Drought Index	$\frac{NDVI - NDWI_1}{NDVI + NDWI_1}$		Gu et al. (2007); Renza et al. (2010)	assessing drought			
Indices	DSI	Desertification Soil Index	$\frac{R_{1648} - R_{498}}{R_{1648} - R_{2203} + 0.2}$	SWIR1 - Blue SWIR1 - SWIR2 + 0.2	Wu et al. (2010)	highlight the higher reflectance of desertification soil as	Yes	Aridification	Yes

Composite Indica	itors							
Indicator		Sub-indicator	Metric/Measures	Final Formula	Reference			
		Land Cover (LC) change (Trend in LC)	LC Area		UNCCD (2017; 2018); https://unstats.un.or	Yes		Yes
		Land Productivity loss	Net Primary Production (NPP)/Gross Primary Production (GPP)		g/sdgs/metadata/fil es/Metadata-15-03-	Yes by proxies from RS		Yes
		Soil Organic Carbon (SOC) decline	soc		01.pdf	Yes by proxies from RS		Yes
		Further sub-indicators						
SDG 15.3.1 (v2	"proportion of	Loss of habitat quality	Habitat cover Area			Partially from RS (LC/habitat map)+InVEST model	Habitat loss; trees	Partially (LC)
released on March,	land that is degraded over			One Out, All Out			encroachment (Very High Resolution RS data); Urban	
29th 2021)	total land area"	Burnt Areas	LC Area			Yes	expansion	Yes
		Fragmentation Index	Mesh density		Assennato et al. (2020)	Partially from RS (LC)+spatial rules		Partially(LC)
		Areas of potential impact	LC Area			Partially from RS (LC)+spatial rules		Partially(LC)
		Density of artificial LC	LC Density			Yes		Yes
		Increasing of not sealed areas	LC Area			Partially from RS (LC)+spatial rules		Partially(LC)

MATCHING OF EACH SELECTED INDEX/INDICATOR WITH

THE DEGRADATION PROCESSES IN EACH PILOT SITE

		Indices						Degra	adation proce	sses					
Туре	Acronym	Description	Landscape modification	Aridification	Forest fires	Hydrological modification	Overgrazing	Soil salinization	Soil organic matter decline		Decline in vegetation community functioning	Decline in vegetation cover/biomass	Habitat loss	Increase in invasive species	Trees encroachment
	NDVI	Normalized Difference Vegetation Index	X		X		X				X	Х	Х	X	X
	GNDVI	Green Normalized Difference Vegetation Index	X		X		X				X	Х	Х	X	X
	MSAVI ₂	Modified Soil-Adjusted Vegetation Index	X		X		X				X	Х	Х	X	X
	OSAVI	Optimized Soil-Adjusted Vegetation Index	X		X		X				X	Х	X	X	X
Vegetation	NDRE	Normalized Difference RedEdge	X		X		X				X	X	X		
Indices	ARVI	Atmospherically Resistant Vegetation Index	X				X				X	Х	X		X
	EVI ₂	Enhanced Vegetation Index 2	X				X				X	Х	X		X
	REP	RedEdge Position	X				X				X	Х	X		
	NBR	Normalized Burn Ratio			X										
	NBR ₂	Normalized Burn Ratio 2			X										
	NDWI ₁	Normalized Difference Water Index 1	X			X						X			
Water Indices	NDWI ₂	Normalized Difference Water Index 2	X			X									
	MNDWI	Modified Normalized Difference Water Index	X			X									
	NDSI	Normalized Difference Soil Index	X	Х			х	Х	X				X		
Soil Indices	NDBSI	Normalized Difference Bare Soil Index	X	Х			Х	Х	X				X		
	BI	Bare Index	X	Х			х	Х	X				X		
	SSI ₁	Soil Salinity Index-1	X	Х				X							
Soil Salinity	SSI ₂	Soil Salinity Index-2	X	Х				X							
Indices	SSI3	Soil Salinity Index-3	X	Х				X							
marces	SI	Salinity Index	Х	Х				X							
	SASI	Soil Adjusted Salinity Index	X	X				X					Х		
Drought/Dryness	NDDI	Normalized Difference Drought Index	X	X			X	X	X				Х		
Indices	DSI	Desertification Soil Index	X	X			x	X	X				х		

MATCHING OF EACH SELECTED INDEX/INDICATOR WITH

THE DEGRADATION PROCESSES IN EACH PILOT SITE

	Indicators	Landscape modification	Aridification	Forest fires	Hydrological modification	Overgrazing	Soil salinization	Soil organic matter decline	Soil erosion by water and wind	Decline in vegetation community functioning	Decline in vegetation cover/biomass	Habitat loss	Increase in invasive species	Trees encroachment
	Land Cover (LC) change (Trend in LC)	Х	X	X		X		Х		X	Х	X	Х	Х
	Land Productivity loss		X	X		X		X		X		X		
	Soil Organic Carbon (SOC) decline		X	X		X		X		X		X		
SDG 15.3.1 (v2	"proportion of land that is Loss of habitat quality	Х	X	X		X		X		X	X	X		
released on	degraded over total land Burnt Areas	Х	X	X						X	X	X		
March, 29th 2021)	area" Fragmentation Index	Х		X		X				X	X	X		
	Areas of potential impact	Х		X		X				X	X	X		
	Density of artificial LC	Х								X	X	X		
	Increasing of not sealed areas	Х								X		Х		

Sites	Landscape modification	Aridification	Forest fires	Hydrological modification	Overgrazing	Soil salinization	Soil organic matter decline	Soil erosion by water and wind	Decline in vegetation community functioning	Decline in vegetation cover/biomass	Habitat loss	Increase in invasive species	Trees encroachment
El Bruc	X	X	X				X	X	X	X	X	X	
Tifaracás		X		X	Х		Х	X	Х	X	X		
Palo Laziale		X							х	X	X		
Nestos	X					X					X	X	
Alta Murgia	X	X	Х					X	х	X	X	X	X
Asterousia	X	X		Х		X	X	X	X	X	X		
Tot. presence of degradation across sites	4	5	2	2	1	2	3	4	5	5	6	3	1

SDG 15.3.1: "proportion of land that is degraded over total land area"

The sub-indicators and their associated metrics (in parentheses) useful for SDG 15.3.1

- 1. <u>Trend in Land cover (assessed as land cover change)</u>
 - → Action: list of land cover classes (taxonomy: according to FAO-LCCS)
 - \rightarrow Action: list of the main changes of interest (from-to transitions prone to degradation)
- 2. <u>Trend in Land productivity</u> (assessed as net primary productivity, NPP)
 → after implementation of indices as proxy
- 3. <u>Trend in Carbon stocks</u> (assessed as soil organic carbon, SOC)
 → measures on ground/any other
- 4. Extraction of Essential Variables (indices and indicators used as proxies):
 → further sub-indicators (local analysis based on pressures and threats)

ALTA MURGIA									
Sub-indicators	Sensor	Spatial resolution (m)	Spatial frame	Temporal frame					
NATURAL GRASSLAND COVER MAP;	Landsat	30		1990; 2001; 2004; 2011					
BURN SEVERITY MAP	Sentinel-2	10		2018; 2021					
VEGETATION PHENOLOGY INDEX (MSAVI2)	Landsat	30	N2K	2000-2018					
PLANT PHENOLOGY INDEX (PPI)	Sentinel-2	10	+5 km buffer	2017-2020					
STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI)	3 meteo stations			2011-2020					
SOC*	Sentinel-2; PRISMA	10; 30	Only LC classes with ground data	2020					

PALO LAZIALE									
Sub-indicators	Sensor	Spatial resolution (m)	Spatial frame	Temporal frame					
LAND COVER MAP	Pleiades	2		2020; 2021					
VEGETATION	Quickbird	2.4		2002-2009					
PHENOLOGY INDEX (NDVI/MSAVI2)	Pleiades	2		2014-2021					
PLANT PHENOLOGY INDEX (PPI)	Sentinel-2	10	N2K	2017-2020					
LEAF AREA INDEX (LAI)*			+1 km buffer						
STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX (SPEI)	1 meteo station			2000-2020					
SOC*	Sentinel-2; PRISMA	10; 30	Only LC classes with ground data	2020					

Temporal

frame

2000; 2005;

2010

2017; 2021

2000-2018

2017-2020

2017; 2021

2020

	NESTOS						ASTEROUSIA	
Sensor	Spatial resolution (m)	Spatial frame	Temporal frame	\vdash				Custial
Landsat	30		2000; 2005; 2010		Sub-indicators	Sensor	Spatial resolution (m)	Spatial frame
Sentinel-2	10		2017; 2021	\vdash				
Landsat	30		2000-2018		LAND COVER MAP*	Landsat	30	
			2017-2020			Sentinel-2	10	
Sentinel-2	10	N2K	2017-2020 2017-2020 Oct. 2017 - Sept. 2018;		VEGETATION PHENOLOGY INDEX (MSAVI2)*	Landsat	30	N2K
Jenunerz	10		Oct. 2019 - Sept. 2020; Oct. 2020 - Sept. 2021		PLANT PHENOLOGY INDEX (PPI)*			+5 km buffer
			2017; 2021		BURN SEVERITY MAP*	Sentinel-2	10	
3 meteo stations			2011-2020		SOIL SALINITY INDICES*			
Sentinel-2; PRISMA	10; 30	Only LC classes with ground data	2020		SOC*	Sentinel-2; PRISMA	10; 30	Only LC classes with ground data

Sub-indicators

LAND COVER MAP*

VEGETATION PHENOLOGY INDEX

(MSAVI2)*

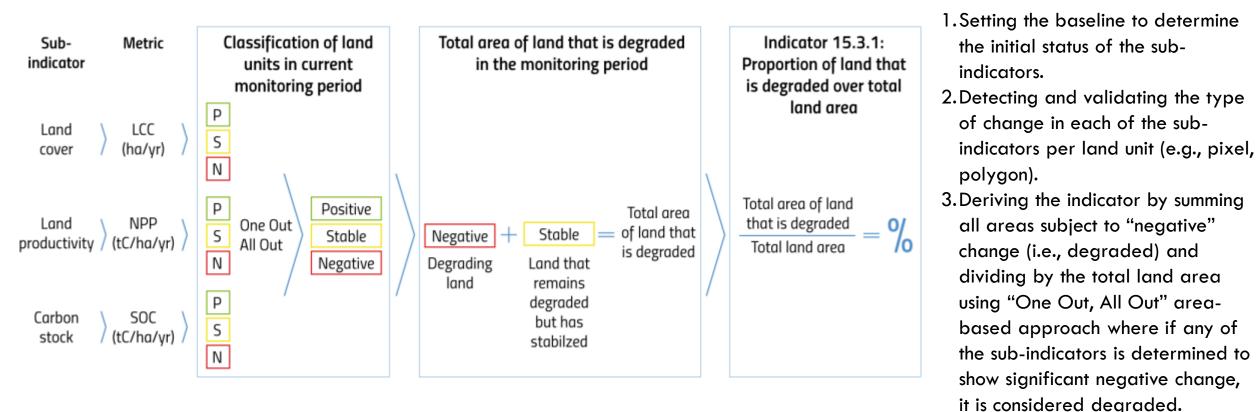
PLANT PHENOLOGY INDEX (PPI)* LEAF AREA INDEX (LAI)*

HYDRO-PERIOD MAP

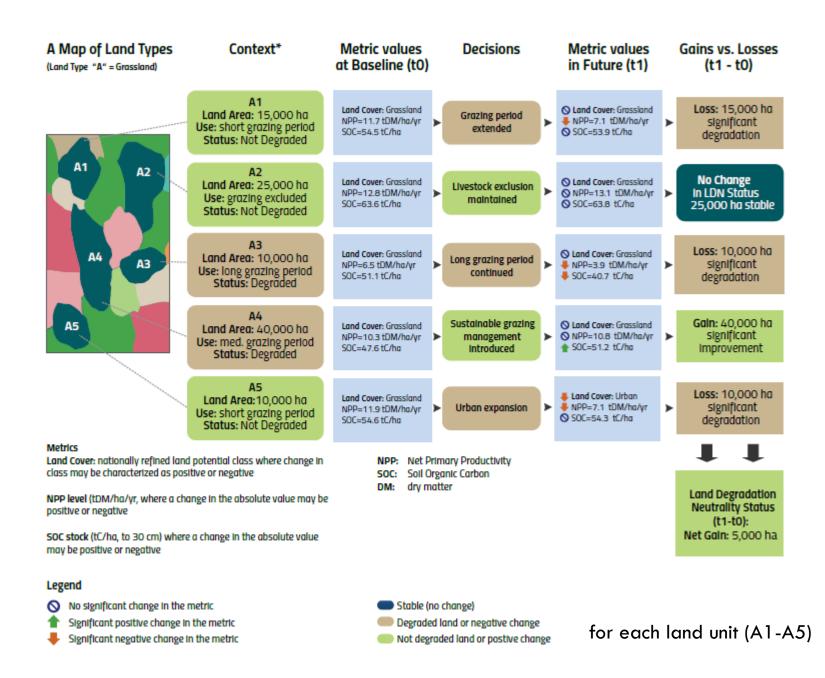
SOIL SALINITY INDICES* STANDARDIZED PRECIPITATION EVAPOTRANSPIRATION INDEX

(SPEI)*

SOC*


EL BRUC										
Sub-indicators	Sensor	Spatial resolution (m)	Spatial frame	Temporal frame						
LAND COVER MAP	Landsat 30			2000; 2005; 2010						
	Sentinel-2	10		2017; 2021						
VEGETATION PHENOLOGY INDEX (MSAVI2)	Landsat	30	N2K +5 km buffer	2000-2018						
PLANT PHENOLOGY INDEX (PPI)	Sentinel-2	10		2017-2020						
BURN SEVERITY MAP				2017-2020						
SOC*	Sentinel-2; PRISMA	10; 30	Only LC classes with ground data	2020						

TIFARACAS				
Sub-indicators	Sensor	Spatial resolution (m)	Spatial frame	Temporal frame
LAND COVER MAP	Landsat	30	N2K +5 km buffer	2000; 2005; 2010
	Sentinel-2	10		2017; 2021
VEGETATION PHENOLOGY INDEX (MSAVI2)	Landsat	30		2000-2018
PLANT PHENOLOGY INDEX (PPI)	Sentinel-2	10		2017-2020
BURN SEVERITY MAP				2017-2020
SOC*	Sentinel-2; PRISMA	10; 30	Only LC classes with ground data	2020



SDG 15.3.1 sub-indicators integration criteria: «one-out, all-out»

SDG 15.3.1

"proportion of land that is degraded over total land area"

What has been assessed up to now: Series of Guidelines

Analysis of pressures and threats causing land degradation in each site (supported by the expert-knowledge) (context-based approach)

- Spatial, temporal and spectral domain affect the choice of satellite data:
 - The spatial framework of the Area of Interest (AOI) and buffer area surrounding:
 - Area > 50 ha (5 km buffer) \rightarrow HR free available satellite data
 - Area < 50 ha (1 km buffer) \rightarrow VHR commercial satellite data
 - The temporal framework (trigger events identification) :
 - Long-term monitoring back before 2015 \rightarrow Landsat data (30 m)
 - Medium/short-term monitoring after 2015 \rightarrow Sentinel-2 data (10-20 m)
 - The spectral response: multi/hyper spectral
 - Combination of spectral and temporal domain (i.e., spectral indices time series)
 - The working scale: local (site-scale)
- Analysis of free available satellite data and the compromises in their choice: long/mid-term vs. short-term monitoring, global vs. local scale, multi- vs. hyper- spectral investigation
- Reviewing of scientific and technical literature about identification of a list of well-known remote sensing indicators and spectral indices
- SDG 15.3.1 indicator computation, according to the United Nations Convention to Combat Desertification (UNCCD) guidelines: integration of further sub-indicators at a local scale for monitoring pressures and threats in each study area according to the "One Out, All Out" criteria.

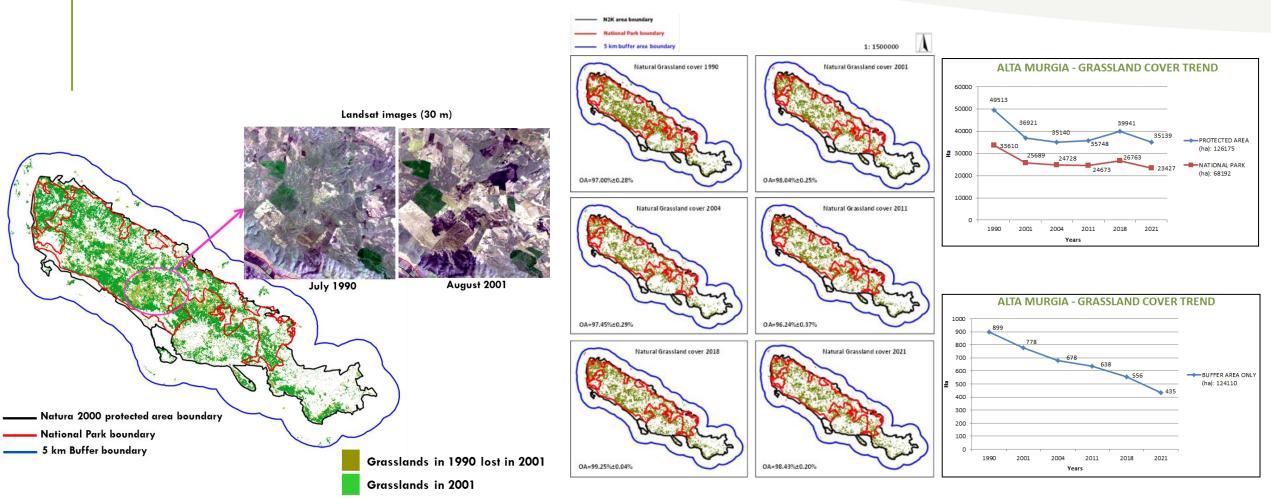
Guidelines are not site-specific solutions: conceived for whatever site for a local scale approach

Gaps encountered

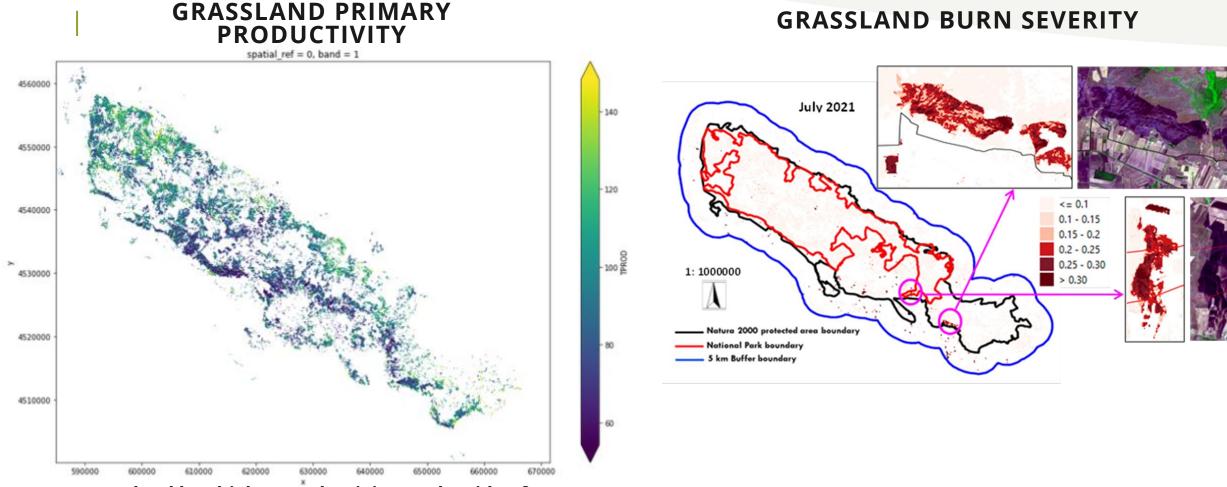
- Availability of optical satellite data without cloud cover or considering clouds/clouds shadow masking;
- Need of tasking and purchase for VHR satellite data in case of small size of study areas;
- Difficulties in the radiometric and geometric calibration mainly for VHR data and in case of mountainous sites (topographic correction);
- Difficulty in the validation of sub-indicators for the lack of ground truth data mainly in the past: in particular for SOC or NPP or their proxies in-field measures;
- Difficulty in the training of data-driven machine learning algorithms due to the lack of sufficient ground truth data;
- Difficulty in obtaining finer land cover details without ancillary data or sufficient information to discriminate among the classes;
- Possibility to obtain soil salinity indices (soil measures sub-indicator) only for those areas covered by bare soil or herbaceous vegetation (the presence of dense trees does not allow to observe the soil from satellite);
- Lack of validation data for SOC, soil salinity, burned areas and vegetation phenology trend indices for the Greek sites due to slight control of the territory;
- Need to update the list of sub-indicators as the sites change.

Strenghts

- Starting from an accurate analysis of the main problems affecting the different types of Mediterranean ecosystems;
- Provisioning for local scale detail: HR or VHR satellite data in case of areas > 50 ha or < 50 ha, respectively;
- Increase of sub-indicators to be combined to obtain SDG 15.3.1;
- Calculation of SDG 15.3.1 indicator at local scale overcoming the current Trends.Earth tool available at global scale;
- Usefulness for local decision-makers.

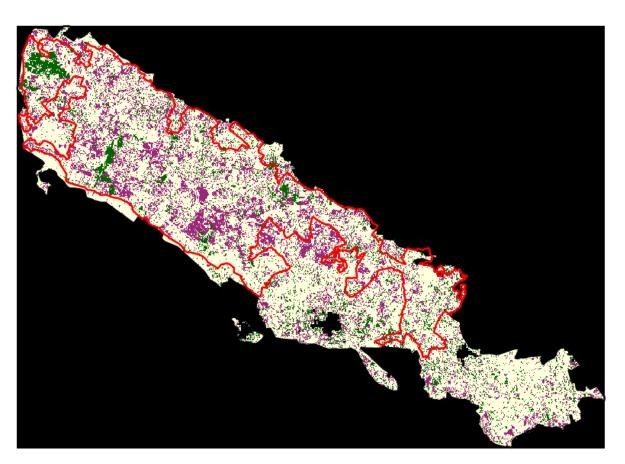

Importance of the local analysis:

- «Good Practice Guideline» for SDG 15.3.1 suggests changes into cultivated land use is not degradation but in Alta Murgia this is the main cause for biodiversity loss from natural grassland ecosytem
 - Decision-makers need of VHR solutions


ALTA MURGIA RESULTS: GRASSLAND COVER TIME SERIES

ALTA MURGIA RESULTS:

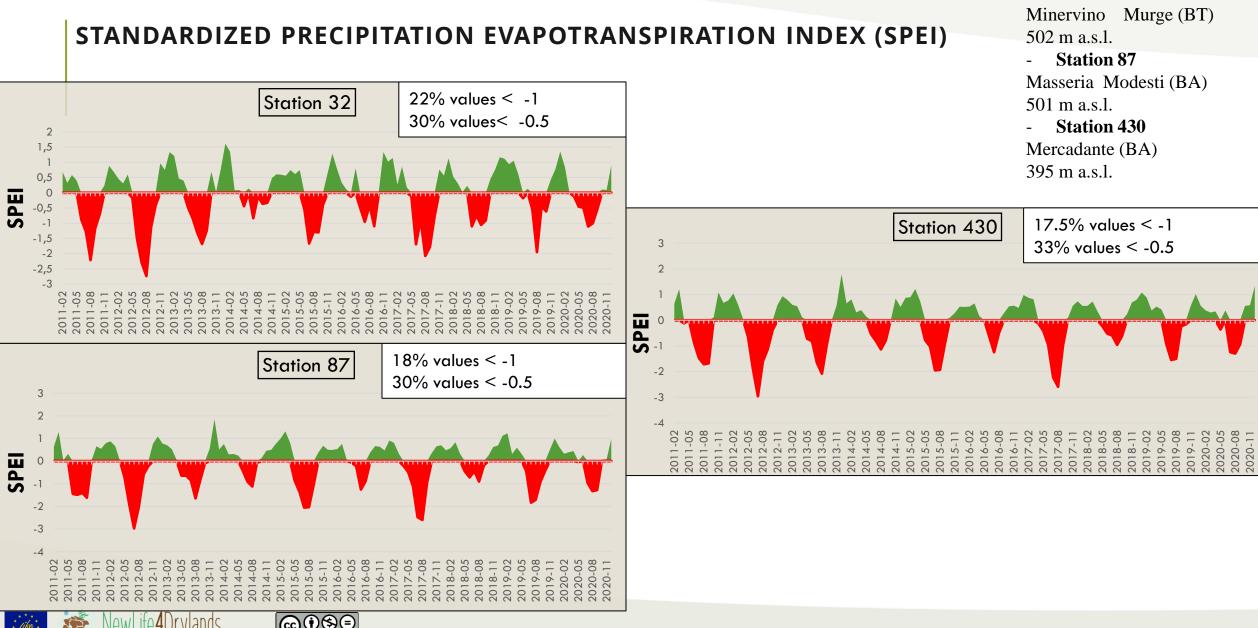
Grassland has higher productivity on the side of the highlands that look towards Adriatic Sea, while central plateau is less productive.

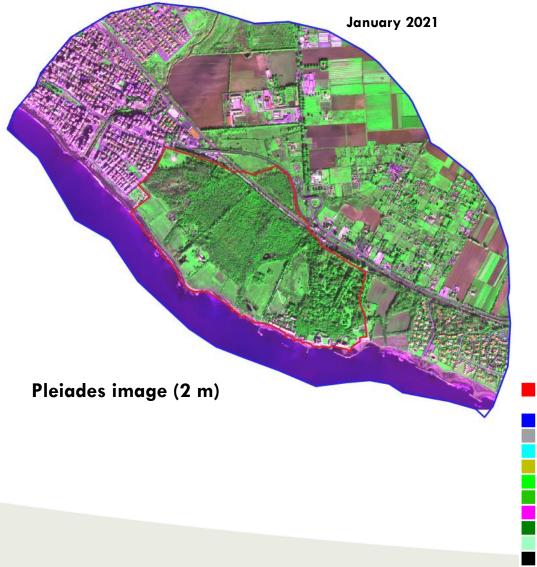


ALTA MURGIA RESULTS:

SOILGRIDS at 250 m for 2016

Soil organic carbon degradation (1990 to 2021)
 No data
 Degradation
 Stable
 Improvement


SOC

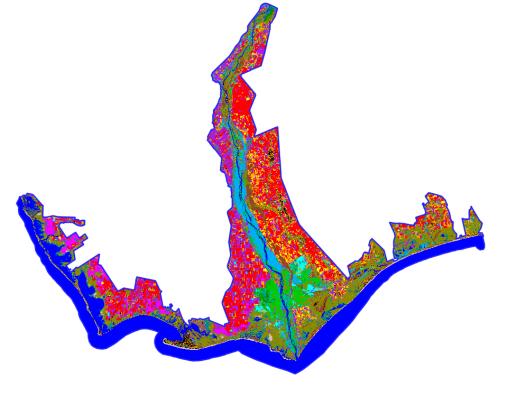


ALTA MURGIA: CLIMATIC ANALYSIS

Station 32

PALO LAZIALE RESULTS: LAND COVER MAPPING

ylands

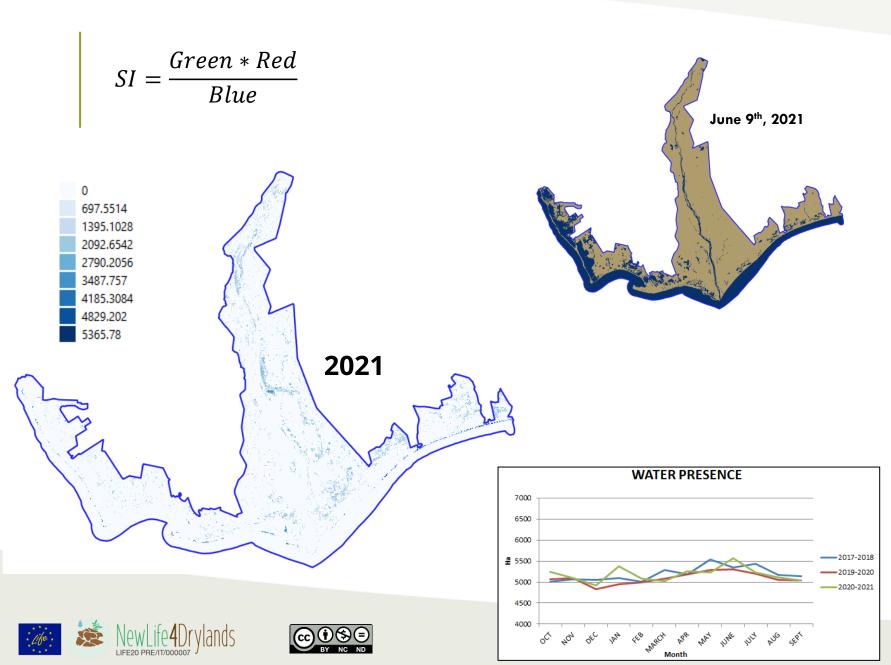

B_Notvegetated (road,bare soil, sand) Unclassified B27/B28_Artificial or Natural Waterbodies SHADOW A24 OR A23_Artificial or Natural Aquatic Vegetation A12/A2.A6 OR A11/A3_Natural Terrestrial Vegetation/Herbaceous.Graminoids or Cultivated Land/Herbaceous A12/A2.A5_Natural Terrestrial Vegetation/Herbaceous.Forbs A12 OR A24/A3.D1.E2_Natural Terrestrial or Aquatic Vegetation/Trees.Broadleaved.Deciduous B15_BUILDINGS A12 OR A24/A3.D1.E1_Natural Terrestrial or Aquatic Vegetation/Trees.Broadleaved.Evergreen A24/A2.A6_Natural Aquatic Vegetation/Herbaceous.Graminoids B15_ROAD OR WET SAND

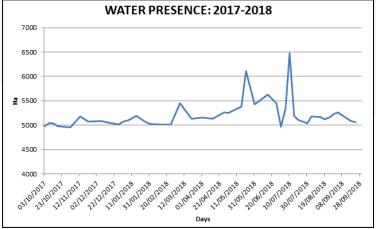
NESTOS: LAND COVER MAPPING

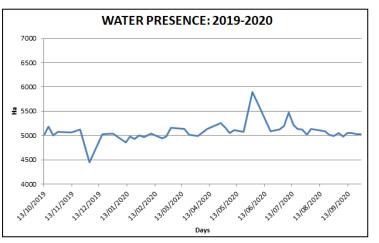
Sentinel-2: September 2nd, 2021 RGB: Red-NIR-Blue

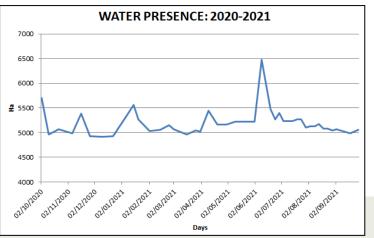
> ARTIFICIAL_AREAS ARTIFICIAL_POPLAR_PLANTATIONS BARE_AREAS

CULT1_DMARCH_DMAY_DJUNE_GJULY_GSEPT_asparagus CULT2_DMARCH_DMAY_GJUNE_GJULY_DSEPT_corn CULT3_DMARCH_GMAY_GJUNE_GJULY_GSEPT_alfalfa CULT4_GMARCH_GMAY_DJUNE_GJULY_DSEPT_wheat_soft CULT5_BMARCH_BMAY_VJUNE_VJULY_VSEPT NATURAL_AQUATIC_VEGETATION_SHRUBS_DECIDUOUS NATURAL_TERRESTRIAL_VEGETATION_HERBACEOUS-GRASSLAND NATURAL_TERRESTRIAL_VEGETATION_TREES-SHRUBS_DECIDUOUS NATURAL_TERRESTRIAL_VEGETATION_TREES-SHRUBS_DECIDUOUS NATURAL_TERRESTRIAL_VEGETATION_TREES-SHRUBS_EVERGREEN NATURAL_WATERBODIES SANDY_SOIL UNCLASSIFIED ARTIFICIAL_91E0_PLANTATIONS

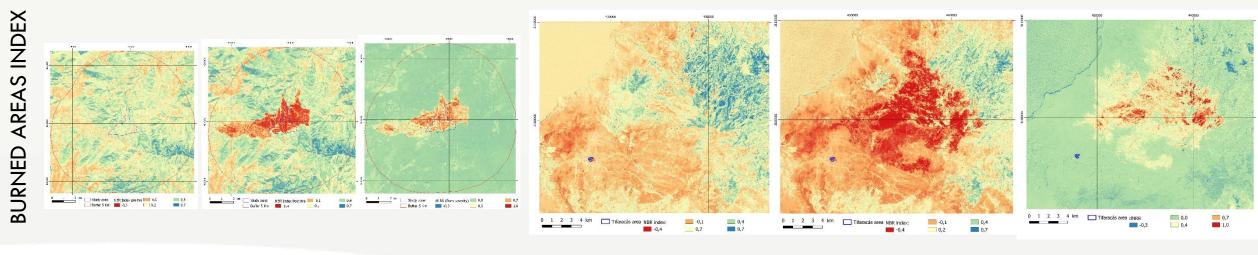


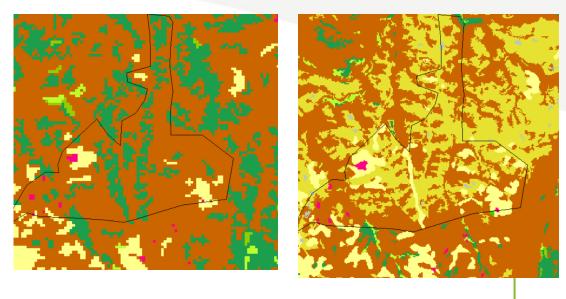





NESTOS: Soil Salinity index

WATER COVER PRESENCE





EL BRUC

TIFARACÁS

LAND COVER MAP

2012 30 m Landsat

2017 10 m Sentinel-2

NBS effectiveness

Indicators identified will be useful for the monitoring of the effectiveness of NBS recovery :

- 1) In the medium/long term for those actions already applied in the framework of previous LIFE project
- In the short term for those actions will be applied during NewLife4Drylands
 -> Alta Murgia

ALTA MURGIA....ON SITE



ALTA MURGIA....FROM SPACE

Strong interaction with: • local decision makers: National Park • Socio-economic actors: network of "park-friendly" farms available to collaborate with good practises

«Alta Murgia» Protected Area

- National Park from 2004

Typical Mediterranean agro-pastoral landscape with millennial land-use history mainly occupied by semi-natural rocky dry grasslands, traditionally used as extensive pastures, while forest vegetation consists only of residual patches of downy oak (Quercus pubescens s.l.) woodlands and Aleppo pine (Pinus halepensis) plantations.

MURGIA ALTA SITE OF COMMUNITY IMPORTANCE (SCI) MURGIA ALTA IT9120007

Protected area: 126,000 ha National Park: 68,192 ha

PICTURES FROM ALTA MURGIA

SEMI-NATURAL GRASSLANDS IN ALTA MURGIA

Semi-natural grasslands of the Western Palaearctic region are considered among the most species-rich habitats in the world (Dengler et al. 2012), This is a site for: Falco Biarmicus Feldeggi and Falco Naumanii (Bird Directive) 62A0 Eastern sub.Mediterranean dry grasslands (Scorzoneratalia villosae) 6210* Semi-natural dry grasslands on calcareous substrates (Festuco-Brometalia), orchid site

6220* Pseudo-steppe with grasses and annual of Thero-Brachypodietea

9250 Quercus Troiana;

8210 Calcareus rocky slope with chasmophytic vegetation

PRESSURES ON SEMI-NATURAL GRASSLANDS IN ALTA MURGIA

Today, many of these semi-natural grassland ecosystems of high conservation value are threatened by dramatic land use changes inducing processes of habitat fragmentation and contamination both within and at its borders by a number of combined pressures :

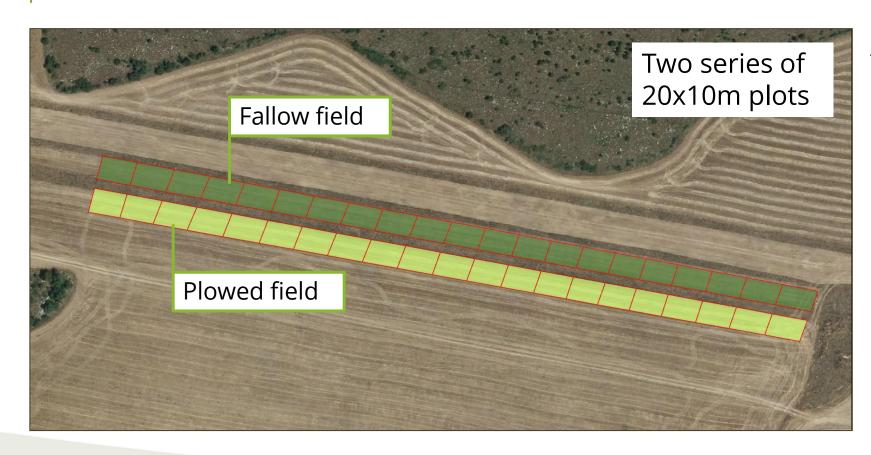
the Common Agricultural Policy (CAP) drove transformation of grassland pastures into agricultural (cereal crops) areas by stone graining, or harrowing which also induced soil erosion and sediment deposition in aquifer, contamination;

 illegal waste and toxic mud dumping on transformed areas causing heavy metal. contamination of soils and aquifer system;

increasing of traditional legal and illegal mining activities; wind farms infrastructures.

below-average precipitation and fires due to illegal activities. The extension of burnt surfaces has dramatically increased in the last three years (2017-2020);

✓15 Jan. 2021: Suitable site for Single national nuclear waste deposit:::::


NBS RESTORATION EXPERIMENT IN ALTA MURGIA

- Previous experiments on grasslands but not in the Mediterranean (LIFE18 NAT/IT/000803 LIFE DRYLANDS or LIFE10 NAT/IT/000243 LIFE MAGREDI GRASSLANDS)
- Little experience and references were found on the restoration of *xeric seminatural grasslands* in Mediterranean environment. This is especially truth for the sub-Mediterranean *xeric grassland* in Alta Murgia, subject to stonecutting and rock graining
- Indirect restoration techniques will be tested (limited budget available), through the setting up of several experimental and control plots

GRASSLAND RESTORATION

Assessing constraints:

- Small surface
- Short time
- Handwork management

GRASSLAND RESTORATION

Planning protocols:

Fallow field

Combinations of:

- Sod cutting or turf stripping
- Seed sowing
- Hay transfer + jute net
- Chamaephyte sowing

Plowed field

Combinations of:

- Topsoil inversion + soil pressing
- Seed sowing
- Hay transfer + jute net

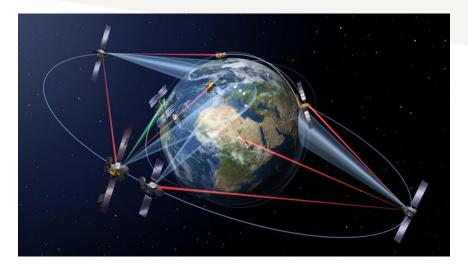
PAPERS PUBLISHED

Article

Sentinel-2 remote sensed image classification with patchwise trained ConvNets for grassland habitat discrimination

Paolo Fazzini¹, Giuseppina De Felice Proia², Maria Adamo^{3,*}, Palma Blonda³, Francesco Petracchini¹, Luigi Forte⁴ and Cristina Tarantino ³

Article



Time Series of Land Cover Mappings Can Allow the Evaluation of Grassland Protection Actions Estimated by Sustainable Development Goal 15.1.2 Indicator: The Case of Murgia Alta Protected Area

Cristina Tarantino, Mariella Aquilino *, Rocco Labadessa and Maria Adamo

THANKS FOR YOUR ATTENTION

