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we used an original approach that combines a multivariate regression tree (MRT), data analysis, and spatial map-
ping. We applied this approach to the main cropping region in France (mainly the Paris basin of production)
using an existing dataset (i.e. soil, climate, crop sequences and management) from the French National Ecosys-

Editor: Paulo Pereira tem Assessment to determine relationships between agricultural production, two services to farmers - nitrogen

provision to crops and water provision to crops — and three services to society — blue water provision, water qual-
Keywords: ity regulation, and climate regulation. To support land managers and decision-makers, we also analyzed the ex-
Ecosystem services tent to which manageable soil properties and agricultural practices (crop rotation and management) are major
Relationships drivers of trade-offs or synergies. We demonstrated that water quality regulation, nitrogen provision to crops,
Cropping systems and climate regulation have synergistic relationships in production situations in the northeastern region of the
Temperate climate study area due to the types of crop rotation, frequency of cover crops in the crop rotation, the soil pH, and the

Regional scale

- ) soil available water capacity. We also identified that cover crops, while promoting these three ES, can drive a
Multivariate regression tree

trade-off between two key water-related services: water provision to crops and blue water provision (i.e. be-
tween a service to farmers and one to society). By capturing non-linear relationships and threshold effects, our
MRT-based approach overcomes the main limitations of classic statistical approaches. The approach is also spa-
tially explicit and simple and intuitive to interpret, especially for non-scientists; our results thus provide re-
searchers and ecosystem managers (e.g. agricultural policy makers) with key information to design ecosystem
management strategies that promote a balanced bundle of ES.

© 2020 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail address: gregory.obiang-ndong@inrae.fr (G. Obiang Ndong).

https://doi.org/10.1016/j.scitotenv.2020.142815
0048-9697/© 2020 Elsevier B.V. All rights reserved.

Please cite this article as: G. Obiang Ndong, J. Villerd, I. Cousin, et al., Using a multivariate regression tree to analyze trade-offs between ecosystem
services: Application t..,, Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.142815



https://doi.org/10.1016/j.scitotenv.2020.142815
mailto:gregory.obiang-ndong@inrae.fr
https://doi.org/10.1016/j.scitotenv.2020.142815
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv
https://doi.org/10.1016/j.scitotenv.2020.142815

G. Obiang Ndong, J. Villerd, 1. Cousin et al.
1. Introduction

Ecosystem services (ES) are defined as the direct and indirect contri-
butions that ecosystems (i.e. living systems) make to human well-being
(Haines-Young and Potschin, 2010; TEEB Foundations, 2010). Since the
work of the Millennium Ecosystem Assessment (MEA, 2005), initiated
to assess consequences of changes in the ecosystems on which human
well-being depends and the means to deal with them, this concept
has grown within the scientific community (Fisher et al., 2009;
Vihervaara et al., 2010; Seppelt et al., 2011; Chaudhary et al., 2015);
thus, the scientific literature to date includes many studies that have
quantified ES (see for example review studies by Seppelt et al., 2011;
Egoh et al., 2012; Martinez-Harms and Balvanera, 2012; Malinga et al.,
2015; Schroter et al., 2016; Englund et al., 2017; Rau et al., 2019). Fur-
thermore, the concept of ES has been integrated into public policies
both locally and internationally (Cardinale et al., 2012).

Among the scientific issues in ES research, analysis of trade-offs or
synergies between services is a main challenge for decision-makers
(Fuetal,, 2015). Trade-offs occur when the provision of one ES increases
while another decreases (Rodriguez et al., 2006; Howe et al., 2014;
Tomscha and Gergel, 2016), while synergies occur when two or more
ES change in the same direction (Bennett et al., 2009; Howe et al.,
2014). This analysis provides decision makers with key information
for land management or planning (Castro et al., 2014). However, the
trade-offs and synergies between ES are complex due to their large nat-
ural variation in space and time and their potential non-linear relation-
ships (Bennett et al., 2009; Koch et al., 2009; Power, 2010; Lester et al.,
2013; Birkhofer et al., 2015).

Among the many quantitative methods used to quantify and analyze
ES trade-offs and synergies, common statistical methods include ana-
lyzing correlations (e.g. Spearman or Pearson), manifold learning (e.g.
principal components analysis), clustering-based visualization (e.g. k-
means clustering), graphical methods (e.g. petal diagrams, star coordi-
nate system), and overlay analysis (see Mouchet et al., 2014; Birkhofer
et al.,, 2015; Martinez-Harms et al.,, 2015; Lee and Lautenbach, 2016; Li
et al.,, 2017; Dade et al., 2018; Saidi and Spray, 2018; Vallet et al., 2018
for a review). Few studies to date have followed a more complex
approach to analyze trade-offs between ES (Lautenbach et al., 2019).
According to Mouchet et al. (2014), these methods are particularly ap-
propriate for identifying positive or negative associations among ES
and providing initial information to identify trends and compare the rel-
ative provision of multiple ES. Some of the methods (e.g. overlap analy-
sis) are also simple and intuitive ways to identify spatially explicit
ES associations (Mouchet et al., 2014). However, most of the methods
have strong limitations (Mouchet et al., 2014; Lee and Lautenbach,
2016). For example, correlation analysis cannot adequately address po-
tential non-linear trade-offs or synergies between ES and critical
thresholds. The methods also cannot explore how multiple and
complex external natural (e.g. solar radiation, precipitation) or anthro-
pogenic (e.g. management practices) factors influence relationships
between ES. Several authors (Bennett et al., 2009; Gos and Lavorel,
2012; Landuyt et al, 2016; Dade et al, 2018) indicate that
understanding trade-offs and synergies between ES is insufficient with-
out carefully examining the drivers and mechanisms that underlie the
relationships.

To address these limitations, Cord et al. (2017) suggest that future
studies use innovative analytical approaches to quantify expected
trade-offs or synergies better, and improve the understanding of the
drivers that support them. For the drivers considered, future studies
should go beyond examining the large-scale and coarsely defined
drivers of changes in land use/land cover and the climate, which are
often considered in studies, and provide more detailed and useful infor-
mation to land managers and decision-makers (see Dade et al., 2018;
Obiang Ndong et al., 2020). To this end, several studies suggest that
soil properties (e.g. Dominati et al., 2010; Dominati et al., 2014;
Adhikari and Hartemink, 2016; Calzolari et al., 2016; Greiner et al.,
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2017) and agricultural management practices (see Lee et al., 2019 re-
view) are important for the supply of many ES (e.g. food production,
water provision, climate regulation). However, according to reviews of
Dade et al. (2018) and Obiang Ndong et al. (2020), only a few studies
have considered these drivers when analyzing ES trade-offs or
synergies.

The objective of this study was to present an innovative use of mul-
tivariate regression trees (MRT) to analyze trade-offs and synergies be-
tween ES and their drivers at a regional level. MRT is a method that
originated in the field of ecology (Smith et al., 2019). To our knowledge,
to date, MRT has not been used to investigate trade-offs and synergies
between ES and their drivers. For example, a search performed in June
2020 with the keywords (“regression tree*”) AND (“ecosystem ser-
vice®” AND (“bund*” OR “relationship*” OR “trade*’OR “synerg*”)) in
the Web of Science Core Collection (Topic; from 2000 to 2020) returned
only 20 references. Only three of them explicitly relate to ES analysis.
Rositano et al. (2018) used k-means clustering and classification trees
to identify the dependence of ES supply on the variation in environmen-
tal and crop management factors in Pampean agroecosystems. Lutz et al.
(2016) used regression trees to investigate trade-offs between three ES
across the state of New Hampshire, USA. Zhang and Ouyang (2019)
used boosted regression trees to explored relationships between key
ecological indicators at different scales. Thus, these three studies used
only univariate or boosted regression trees (vs. multiple regression
trees) to determine the influence of multiple predictor variables on a
single response variable.

We used an MRT-based approach (i.e. a combination of MRT, data
analysis, and spatial mapping) to address two major research issues in
the analysis of ES relationships: (i) Do trade-offs or synergies between
ES exist, and if so, where are they located in the landscape? and (ii)
What drivers influence spatial variation in trade-offs and synergies be-
tween them?

2. Materials and methods

We applied our MRT-based approach to part of the dataset produced
by the French National Ecosystem Assessment (NEA) of agricultural
ecosystems (see Therond and Tibi, 2018) to analyze trade-offs and syn-
ergies between agricultural production (goods) and ES related to soil
functioning provided to farmers and society in the main cropping region
in France.

2.1. Dataset of ecosystem service levels

The French NEA of agricultural ecosystems - part of the French ver-
sion of the European MAES (Mapping and Assessment of Ecosystems
and their Services) program (https://biodiversity.europa.eu/maes) —
was performed from 2014 to 2017. Therond and Tibi (2018) provide a
detailed description of the study that was performed within this pro-
gram to assess ES in agricultural areas in France. The main objective of
this study was to estimate the range of ES and goods that agricultural
ecosystems provide by using the finest-scale and most current biophys-
ical assessment approaches and databases.

The crop-plant simulation model STICS (“Simulateur
mulTIdisciplinaire pour les Cultures Standard”) (Brisson et al., 1998,
2002, 2003, 2009) was used to predict agricultural production (goods)
and five ES related to soil functioning: two services to farmers
((i) nitrogen (N) provision to crops and (ii) water provision to crops
(i.e. crop transpiration, hereafter called green water) and three services
to society (iii) blue water provision (i.e. water flowing from agricultural
ecosystems to hydrosystems), (iv) water quality regulation, and
(v) climate regulation through carbon (C) sequestration in the soil. Spe-
cific indicators were developed in the French NEA to assess the levels of
ES (Table 1). STICS was chosen because it had been determined to sim-
ulate dynamics of agrosystems accurately for a wide range of agro-
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environmental variables and conditions in France (Coucheney et al.,
2015).

In the French NEA, STICS was run on a daily time step for a 30-year
period (1983-2013) for the main cropping systems in pedoclimatic
units (“PCUs”) in mainland France. PCUs correspond to the spatial
intersection between soil mapping units of the 1:1,000,000 French Soil
Geographical Database (Jamagne et al., 1995) and the 8 km x 8 km
SAFRAN climate grid (Durand et al., 1993; Quintana-Segui et al., 2008;
Vidal et al,, 2010). Only the 23,149 PCUs with more than 100 ha of agri-
cultural area, as described in the French Land Parcel Identification
System, were considered in the French NEA, because they represented
99.2% of the total agricultural area in France. They represented 27.29
Mha of annual and perennial crops, grasslands, market gardens, and
fallow land.

Initial soil organic C (SOC) stocks in the first 0.3 m of the soil were
estimated from data provided by Mulder et al. (2016) at a
90 m x 90 m resolution, considering only pixels with crops in each
PCU. Soil organic N content (0-0.3 m) was then calculated using a con-
stant C:N ratio of 11 and the bulk density of this layer for each soil type.
The other soil characteristics used by STICS (clay content, water content
at field capacity and at the permanent wilting point) were estimated
using pedotransfer rules applied to the 1:1,000,000 French soil data
(Jamagne et al., 1995).

A two-step approach was used to describe the dominant cropping
systems (i.e. rotation and crop management practices) in each PCU.
First, the crop rotation database developed by the French National
Research Institute for Agriculture, Food and Environment (INRAE),
(Leenhardt et al, 2012) was used to identify the main crop
rotations in each PCU. For each PCU and by type of crop rotation (i.e.
pure crop or ley/crop) one dominant rotation was selected if it repre-
sented more than 50% of the agricultural area. Otherwise, we
selected the first two dominant rotations with an area greater than
10% of the PCU area. Based on these rotations and the crops
calibrated in STICS, the crops simulated were maize (grain and forage
maize), winter wheat, rapeseed, sugar beet, sunflower, and winter and
spring pea. For maize, one cultivar with a precocity adapted to the num-
ber of growing degree days between sowing and harvest for at least
8 out of 10 years was selected per PCU. For the other crops, we selected
the most common cultivar used in France for which STICS was
calibrated.

Second, management practices for each simulated crop were deter-
mined using results of the French Agricultural Practices Survey con-
ducted in 2006 and 2011 (Agreste, 2014). Since these data are
considered representative of administrative regions (geocode standard
NUTS II) and are available only at this level, median observations per
crop and region were used for sowing and harvest dates, mineral or or-
ganic fertilizer doses, splitting of mineral N fertilization, percentage of
crops with organic N fertilization, type and frequency of organic N fertil-
ization, and frequency of tillage.

Ultimately, STICS was run to simulate daily dynamics of 49,935
production situations in 10,263 PCU that covered all arable land in
France, for annual crops only (since perennial crops, grasslands, market
gardens, and fallow land were not simulated with STICS, we excluded
them from this study). The production situations corresponded to a
combination of soil type, climate, dominant rotation, and median
crop management practices (see Willocquet et al. (2008)). STICS
simulation outputs were used in calculations to estimate the indicators
of agricultural production and the five ES selected (Table 1). Descriptive
statistics of these indicators are shown in Table S1 in the Supplementary
material. To ensure that the yield data were similar among crops,
simulated biomass dry matter yields were transformed into energy
yields using energy content coefficients like in Dittrich et al. (2017)
and Xu and Liu (2019). The energy content coefficients of
wheat, sugar beet, maize (grain and forage), sunflower, rapeseed, and
pea were 379, 70, 384, 636, 641, and 381 kcal/100 g dry matter,
respectively.
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Because these indicators of agricultural production and ES had dif-
ferent units, they were normalized to range from O to 1, as follows:

X:—X..:
X = i min 1
! Xmax_xmin ( )

where X/’ is the normalized value of the indicator, X; is the value of the
indicator for each production situation, and X,,;;, and X;,,ox are the mini-
mum and maximum value of each considered indicator variable over
the production situations, respectively.

According to Calzolari et al. (2016), this equation “gives high priority
(i.e. values close to 1) to higher values of the considered indicator; the
lowest value, 0, does not indicate that the function is not provided, but
that it is the lowest in the considered area”. The normalization should
provide a meaningful comparison of indicators to identify trade-offs
and synergies.

2.2. Selecting potential drivers of trade-offs/synergies in ecosystem services

To analyze drivers of trade-offs or synergies between agricultural
production and ES, we selected 16 potential driver variables (Table 2)
that were either initial inputs used in STICS or certain outputs simulated
by it. To support land managers and decision-makers, we considered
only manageable drivers (i.e. manageable soil properties and agricul-
tural practices (crop rotation and management)). For soil properties,
we selected SOC content, pH, and calcium carbonate (CaCO3) content.
These soil characteristics are frequently included in ES studies that
focus on soil functioning (see Adhikari and Hartemink (2016); Greiner
etal. (2017)) and are included in the minimum dataset for representing
soil quality (Garrigues et al., 2012).

For agricultural practices, we selected characteristics of crop rota-
tions (i.e. number of crops simulated and the frequency of each, namely
the percentage of the number of crops in rotation) and crop manage-
ment practices. (i.e. mineral N added via mineral/organic fertilizers
and SOC inputs to the soil profile).

2.3. Multivariate regression tree approach for analyzing trade-offs/
synergies between ecosystem services

We used a MRT approach (i) to analyze trade-offs and synergies be-
tween agricultural production and the five ES selected (Table 1), and (ii)
to identify potential drivers (Table 2) that influence the spatial variation
and ES trade-offs and synergies in the study area.

MRT is a machine-learning technique developed by De'ath (2002).
As an extension of univariate regression trees (Breiman et al., 1984),
MRT can address more than one response variable (Questier et al.,
2005) and “can be used to analyze complex ecological data, and espe-
cially to explore, describe, and predict relationships between multispe-
cies data and environmental characteristics” (De'ath, 2002). According
to Borcard et al. (2018), “MRT is a powerful and robust method that
can handle a wide variety of situations, even those where some values
are missing, and where the relationships between the response and ex-
planatory variables are non-linear or high-order interactions among ex-
planatory variables are present.”

MRT were fitted using R statistical software (R Core Team, 2018),
specifically the archive version 1.6-2 of the R package “mvpart”
(Therneau et al., 2014). MRT was used as an exploratory approach to
identify dependence between the ES bundles i.e. “sets of ES that repeat-
edly appear together across space or time” (Raudsepp-Hearne et al.,
2010) and their underlying drivers. Thus, the 16 potential drivers
(Table 2) were considered exploratory variables, and the agricultural
production and five ES indicators (Table 1) were considered response
variables. To ensure equal contribution to the multivariate response,
the normalized values of agricultural production and ES indicators
were used (Eq. (1)). The potential driver variables were not normalized,
to facilitate interpretation in their original units.
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Table 1
Biophysical indicators of agricultural production and the five ecosystem services used in the study.
Ecosystem Indicator Units Calculation method Variable Definition Units
service
Agricultural Biomass-based energy sources 107 kcal ha=! yr~! EP = crop yield*energy Mafruit (crop Biomass of harvested organs tha ! yr!
production (EP) content coefficient yield)
DMexported (crop Cumulative amount of harvested t ha™"
yield) biomass (for maize fodder)
Energy content Wheat: 379; sugar beet: 70; keal yr—!
coefficient (kcal maize (grain and forage maize):
per 100 g) 384; sunflower (grain): 636;
rapeseed:641; and, winter and
spring pea (grain): 381
Nitrogen (N) Amount of mineral N supplied kg N ha=! yr~! Nmineral_from_plt + Qfix Nmineral_from_plt Cumulative amount of N kg N ha=! yr!
provision to by the ecosystem during the mineralized during the crop
crops cropping cycle (i.e. N cycle (sowing to harvest)
mineralized from humus and Qfix Amount of N fixed symbiotically kg N ha~! yr~!
residues, and N from fixation) between two cuts
Water provision Amount of water restored to Dimensionless C;Ppﬁllrrrf cep_sirr Cumulative transpiration during mm yr—!
to crops the soil during the cropping - the cropping season, without
(called green  cycle based on maximum irrigation
water) evapotranspiration crop needs cep_irr Cumulative transpiration during mm yr—!
the cropping season with
irrigation
Blue water Mean annual water yield Dimensionless St drat Cumulative amount of water mm yr—!
provision drained at the base of the soil
profile during the simulation
period
rr_mm Precipitation (from Meteo mm yr—!
France data)
Water quality The proportion of N not leached Dimensionless % totapN Cumulative amount of mineral N kg N ha=' yr~!
regulation With: added via mineral and organic
minN = Qminh + Qminr fertlllzer§ 1
Qles Cumulative amount of NO3-N kg N ha='yr
leached at the base of the soil
profile
Qminh Cumulative amount of kg N ha=!yr~!
mineralized N derived from
humus decomposition
Qminr Cumulative amount of kg Nha=!yr!
mineralized N derived from
organic residue decomposition
Climate Relative annual change (%) in Dimensionless W SOC_initial Amount of C in humified organic mgCha™! yr™!
regulation soil organic carbon (SOC) stock matter (active + inert

To avoid overfitting, we first identified the optimal tree size by fol-
lowing a 10-fold cross validation procedure and selecting the tree size
that minimized the cross-validated error (as described by Breiman
et al. (1984)). We then plotted the error vs. tree size (i.e. model com-
plexity), which showed that the size selected lay on the plateau of the
curve. These preliminary analyses led us to decide that a shorter tree
with five “leaves” was the best compromise between prediction and in-
terpretability, because it allowed us to focus on a few interactions, and
thus hypotheses to be tested with confirmatory methods in future stud-
ies. Consequently, the tree was pruned to five “leaves” in this study to
balance the descriptive power of the tree with the interpretability of
its results. The predictive accuracy of the MRT was assessed using a k-
fold cross-validation procedure, as follows. The dataset was divided
into k = 10 equal-sized subsets according to a widely used rule of
thumb (see Kuhn and Johnson, 2013). A five-leaf MRT was fitted using
the union of k-1 subsets as a training set and evaluated with the remain-
ing subset as test set. By permutating the test subset, k five-leaf MRT
were fitted and evaluated, and thus the mean of the k pseudo R? was
considered as the predictive accuracy on unseen data. This cross-
validation procedure was performed internally using mvpart. Like
Smith et al. (2019), we replaced the bar plot generated by mvpart for
each leaf with a boxplot to provide more detailed information.

To strengthen analysis of the tree, we calculated the “importance” of
each driver according to the definition of importance of Breiman et al.
(1984). Doing so allowed us to distinguish, among the driver variables
that did not appear in the tree, those that explained nothing (zero

importance) from those that were “masked” by another driver variable
(ie. “surrogate”). We also created boxplots of the initial drivers (Fig. S1
in the Supplementary material), as for the initial input dataset of the

Table 2

Sixteen variables used as proxies of potential drivers of trade-offs and synergies between
agricultural production and ecosystem services; See Table S1 in the Supplementary mate-
rial for descriptive statistics of the crop rotation and management practice drivers.

Driver type Definition Units
Crop rotations ~ Number of crops and cover crops in the rotation Absolute
Number of crops in the rotation (excluding cover Absolute

Crops)

Frequency of cover crops in the crop rotation
Frequency of wheat in the crop rotation
Frequency of rapeseed in the crop rotation
Frequency of beet in the crop rotation
Frequency of forage maize in the crop rotation
Frequency of grain maize in the crop rotation
Frequency of sunflower in the crop rotation
Frequency of spring pea in the crop rotation
Frequency of winter pea in the rotation

3% 3% 3% 3% 3% 3R 3% % X

Management Cumulative amount of mineral N added via mineral kg N ha~!
practices and organic fertilizers
Soil organic carbon (C) inputs to the soil profile kg Cha™!
Soil properties  Initial soil organic C stock mgCha™!
Soil pH Unitless
Calcium carbonate content %
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MRT (Table 2), according to each leaf of the final tree. We also included
drivers not initially present, such as yield, soil clay content, and available
water capacity. Although the latter two are not manageable (i.e. do not
depend on short- or medium-term human actions or cannot be changed
without prohibitive costs (Dominati et al., 2010)), they provided crucial
information about the soil (Dominati et al., 2010) that was relevant for
analyzing the MRT results. In these boxplots, to understand whether the
drivers differed significantly between the leaves of the final tree (i.e. sig-
nificant differences of the production situations between leaves), the
non-parametric Kruskal-Wallis ANOVA test (KW) was performed
(Fig. S1 in the Supplementary material), using the R package pgirmess
(Giraudoux, 2018). If significant differences were observed at
p < 0.05, a multiple comparison rank test was performed to identify
the differences.

2.4. Case study: the main non-irrigated arable agricultural systems in
France

To illustrate the potential of the MRT approach, we applied it to iden-
tify relationships between agricultural production and the five ES in the
PCUs located in the modified oceanic climate of the central and northern
plains, as described in Joly et al. (2010). In this French sub-area, the
mean annual temperature is about 11 °C, and the dominant soil classes
(based on the World Reference Base for Soil Resources classification)
are cambisols, luvisols, umbrisols, and fluvisols. This sub-area repre-
sents 3748 PCUs and 15,296 sampled non-irrigated production
situations.

We applied the MRT approach to only one climate region to mitigate
effects of strong climatic drivers that could hide effects of manageable
drivers. For the same reason, we focused only on non-irrigated arable
systems. We chose this climatic region because the central and northern
plains of France correspond to “the most important agricultural produc-
tion region of France and one of the biggest cereal producing regions in
Europe” (de Frutos et al., 2017). It also covers the most important aqui-
fers in France - the Beauce groundwater area (nearly 10,000 km?) - with
important water-deficit and associated water inflow issues (Verley,
2020).

3. Results
3.1. Spatial distribution of ecosystem services

Agricultural production and climate regulation levels had similar
spatial distributions, especially in the center of the study area, where
they mainly had moderate values (Fig. 1). The spatial distribution of N
provision to crops and blue water provision clearly shows strong oppo-
site distributions in the northeastern areas: the blue water provision ES
is lower than the median value, whereas N provision to crops is higher.
The spatial distribution of water quality regulation and water provision
to crops is also similar across the study area, and is mainly characterized
by high values in the center. N provision to crops had the highest values
in the western area of the study, whereas water provision to crops had
the lowest values. See Fig. S2 in the Supplementary material for the spa-
tial distribution of agricultural production and ES in their original units.

3.2. Multivariate regression tree

The final MRT consisted of three split levels and five leaves (Fig. 2).
The accuracy (R?) of MRT was 0.30 (1 - cross-validated residual error)
(i.e. the tree explained 30% of the variance).

3.2.1. Regression tree description

Three of the 16 potential drivers were selected to split the five
leaves: the frequency of cover crops in the crop rotation (level 1 of the
split), soil pH (level 2 of the split), and the frequency of beet in the
crop rotation (level 3 of the split). Other drivers, such as CaCOs content,
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number of crops in the crop rotation, and mineral and organic N fertili-
zation, were surrogates (Fig. S3 in the Supplementary material).

At level 1 of the split, the tree distinguished production situations
with a low frequency (<16%) from those with a high frequency
(216%) of cover crops in the crop rotation. The former branch was
then split (level 2) into two branches, that distinguished high soil pH
(26.75, leaf 1) from low pH (<6.75, leaf 2). The branch for cover crop
frequency > 16% also split into two branches that distinguished high
pH (26.75, leaf 3) from low pH (<6.75). The latter branch was then
split (level 3) into two branches that distinguished low frequency
(<36%, leaf 4) from high frequency (>36% for leaf 5) of beet in the
crop rotation. Although PCUs of certain leaves were located throughout
the entire study area, leaves tended to cluster by region of the study
area: leaf 1 mainly in the southeast, east, and in the south of the Paris
basin; leaf 2 mainly in the Paris basin; leaf 3 in the northeast; leaf 4 in
the center; and leaf 5 in the northeast.

3.2.2. Regression tree analysis

Each leaf was analyzed based on the tree results (Fig. 2 and Table 3)
and the boxplots of the initial drivers (Fig. S1 in the Supplementary
material).

* Leaf 1: low frequency of cover crops in the southeastern and eastern
regions of the study area.

In leaf 1 production situations (n = 3500), levels of agricultural pro-
duction and N provision to crops lay at the median of all situations in-
vestigated. Water quality regulation, climate regulation, and water
provision to crops were below median, while blue water provision
was above the median and thus had a trade-off relationship. Production
situations in this leaf were characterized mainly by a short crop rotation
that included a monoculture of wheat and a wheat-rapeseed rotation,
which were associated with high mean mineral/organic fertilization
(>175 kg/ha) (Fig. S1). They were located over slightly alkaline and cal-
careous soils (pH > 7 and CaCOs5 content about 10%, respectively) and
had a lower available water capacity (<100 mm) than those of the
other leaves.

* Leaf 2: low frequency of cover crops around the Paris basin of
production

In leaf 2 production situations (n = 6174), water quality regulation,
climate regulation, and blue water provision lay at median levels. Agri-
cultural production and water provision to crops were particularly high,
while N provision to crops was moderately low. Thus, these production
situations had a synergistic relationship between agricultural produc-
tion and water provision to crops, but a trade-off relationship between
these two ES and N provision to crops. As for leaf 1, production situa-
tions in this leaf were characterized mainly by a short crop rotation
that included a monoculture of wheat and a wheat-rapeseed rotation
which were associated with high mean mineral/organic fertilization
(>175 kg/ha) (Fig. S1). However, the soil was slightly acidic (pH < 7),
without CaCOs, and had a moderately low available water capacity
(<150 mm).

* Leaf 3: medium frequency of cover crops in the northeastern region of
the study area

In leaf 3 production situations (n = 2000), the climate regulation lay
at the median level, while agricultural production, water quality regula-
tion, water provision to crops, and blue water provision levels were low
to very low. Since N provision to crops was particularly high, it had a
trade-off relationship with agricultural production and the other regu-
lating ES, except climate regulation. Unlike leaves 1 and 2, leaf 3 was
characterized mainly by a long crop succession that included a wheat-
beet-rapeseed-sunflower rotation associated with a medium frequency
of cover crops and medium mean mineral/organic fertilization
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Fig. 1. Spatial distribution of levels of agricultural production and the five investigated ecosystem services (ES) in the arable area of the “modified oceanic climate of the central and northern plains”, at the resolution of pedoclimatic units (n = 3748).
Levels are normalized from O (red) to 1 (green). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1032 u1snoD 7 ‘pafA | ‘SuopN Supiqo

XXX (XXXX) XXX JUIUIUOIIAUZ [DIO] dY3 JO 90U



G. Obiang Ndong, J. Villerd, 1. Cousin et al.

Frequency of cover crops
in the crop rotation

<16% | 216%

Science of the Total Environment xxx (XXXX) XXx

= Agricultural production

B Nitrogen provision to crops
. Water provision to crops
M Blue water provision

[ Water quality regulation

Soil pH Ml Climate regulation

26.75| <6.75

Error : 0.70
CV Error : 0.70
SE : 0.0057
R%: 0.3
Soil pH
2675 | <6.75

Frequency of beet in the
crop rotation

<36% |236%

10
1.0

-
-
08
1

08

b

i
!
:-

06
06
|

et
02 04
1

04

02

=

00
k
0

[
e
06 08
1

o

08

04
1
o — e
E e
06
1

02
02

00
1
k
0
1

Leaf 2:n=6174

Leaf_5:n =526

o——
T00 200 300 km

J

o——
700 200 300 hm

Fig. 2. Multivariate regression tree (MRT) results and mapping of production situations. The regression tree must be read from the top (root) to the bottom (leaf). It shows drivers of
ecosystem services (ES) bundles, the bundles, and their associated maps. Each leaf in the tree (i.e. ES bundles) shows the number of associated production situations (n). Drivers of ES
bundles and associated thresholds are specified along the branches of the tree. Statistical indices are shown in the gray box. Error = residual error (calculated with the same data used
to fit the model), CV Error = mean residual error calculated following a 10-fold cross validation procedure to avoid overfitting, SE = standard error of the 10 CV errors. Cross-
validated R2 = 1-CV Error = percentage of variance explained by the tree, which ranged from 0 (poor set of predictors) to 1 (perfect set of predictors). For each leaf (ES bundles), the
boxplots compare agricultural production and ES levels for normalized values ranging from O to 1. The central solid line in each box is the median of ES values of production situations
in each leaf, and dots represent outliers (values outside the whisker range). The edges of each box are 25th and 75th percentiles. Boxplot whiskers are maximum and minimum
values. Dashed horizontal lines behind boxplots represent the median agricultural production and ES values of all production situations investigated. This median value was used as a
reference to compare ES levels among the leaves. The spatial distribution of each terminal group characteristic is shown in the maps.

(<160 kg/ha) (Fig. S1). Like for leaf 1, the soil was slightly alkaline
(pH > 7), but particularly calcareous (CaCO5 content of about 15%),
and had a lower clay content (<15%) than the other leaves. The avail-
able water capacity was also low (<100 mm), as for leaf 1.

* Leaf 4: medium frequency of cover crops in the center of the study
area

In leaf 4 production situations (n = 3096), water quality regulation,
N provision to crops, and climate regulation levels were moderately
high. Agricultural production and blue water provision were moder-
ately low, with a median level of water provision to crops. Thus, produc-
tion situations in this leaf had a synergistic relationship between water
quality regulation, N provision to crops, and climate regulation. How-
ever, these three ES had a trade-off relationship with agricultural pro-
duction and blue water provision. Like for leaf 3, production situations
in this leaf were characterized mainly by a long crop rotation associated
with a medium frequency of cover crops and a medium mean mineral/
organic fertilization (<160 kg/ha). The only difference with the rota-
tions in leaf 3 was the presence of spring pea instead of sunflower.

The soil was slightly acidic (pH < 6.75) without CaCOs, like for leaf 2,
but the available water capacity was moderately high (about 170 mm).

* Leaf 5: high frequency of cover crops in the northeastern region of the
study area

In leaf 5 production situations (n = 526), water quality regulation, N
provision to crops, climate regulation, and water provision to crops
were particularly high. Agricultural production and blue water provi-
sion were low. Thus, there was a strong synergistic relationship
among all regulating ES, except blue water provision. However, these
four ES had a trade-off relationship with agricultural production and
blue water provision. Production situations were characterized mainly
by a short crop rotation, such as wheat-beet, and associated with a
high frequency of cover crops and a medium mean mineral/organic fer-
tilization (<160 kg/ha), like for leaves 3 and 4. SOC inputs to the soil
profile (about 4 t ha™!) and available water capacity (>200 mm)
were higher than those in the other leaves. The soil was slightly acidic
(pH < 6.75) without CaCOs, like for leaves 2 and 4.
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Table 3
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Qualitative interpretation of results of the multivariate regression tree. Green “++" and “+4" symbols correspond to higher and moderately higher, respectively, agricultural production
and ecosystem services in the leaf than in the other leaves. The “=" symbol indicates a median supply, while the red “——" and “—" symbols correspond to a lower and moderately lower

supply, respectively.

Leaf 1

Leaf 2

Leaf 3 Leaf 4 Leaf 5

Frequency of cover crops in the crop

rotation
(< 16%)

Frequency of cover crops in the crop rotation
(> 16%)

.. Soil pH Soil pH Soil pH Soil pH
Tree characteristics P P P P

(26.75) (<6.75) (26.75) (<6.75)

Frequency of beetin  Frequency of beet in
the crop rotation the crop rotation
(< 36%) (2 36%)

Ecosystem service
Agricultural production = - - -
Nitrogen provision to crops = ++ + ++
Water provision to crops - ++ - = ++
Blue water provision + - - -
Water quality regulation - - + ++
Climate regulation - = + ++

4. Discussion
4.1. Drivers of relationships between ecosystem services

Our results suggest that in non-irrigated temperate cropping sys-
tems, crop rotation, cover crop frequency, N fertilization practices, and
certain key soil properties or components (e.g. pH, CaCOs content, avail-
able water capacity) are major drivers of multiple ES. Except for avail-
able water capacity, these relevant drivers are manageable and thus
can be modified via adapted management strategies (Dominati et al.,
2010; Robinson et al., 2013). However, altering drivers such as pH and
CaCOs content significantly often requires large amounts of inputs
and/or time, which can involve prohibitive costs in the long term.
Moreover, these two drivers may serve as proxies for other fertility-
related soil properties that can co-vary with them, such as cation ex-
change capacity or soil texture, which are much more difficult (if not
impossible) to alter. Our results provide practical information for land-
scape management and spatial planning. They can help landscape man-
agers and stakeholders identify which ES bundles can be developed
more than others for a given study area, although it is rarely as simple
to achieve.

The crop rotation is a strong driver of ES since it determines water, N,
and C cycles over cropping seasons and years (Lin, 2011; Kremen and
Miles, 2012; Duru et al.,, 2015). The effects of pH, followed by CaCO3 con-
tent (a surrogate in our analysis, Fig. S3 in Supplementary material), are
recognized as key drivers of soil organic matter mineralization (Clivot
et al,, 2017) and thus of ES related to N and C cycles (here, N provision
to crops, water quality regulation, and climate regulation). Available
water capacity influences water flows in the soil (i.e. the higher the
available water capacity, the lower the percolation) and, as expected,
blue water provision and water quality regulation (O'Geen et al., 2010).

4.2. Relationships between agricultural production and regulating services

From analyzing the MRT, we identified trade-offs and synergies be-
tween agricultural production and ES and their spatial distribution
over the study area. Although directly comparing our results to the
many bundles identified in the literature is difficult due to the diversity
of landscapes studied, statistical methods used, and the ES considered
(Saidi and Spray, 2018), many of our results are consistent with those
of other studies. In their reviews, Lee and Lautenbach (2016) and Saidi
and Spray (2018) indicated that most case studies show a synergistic
relationship between several regulating ES and a trade-off between
regulating and provisioning ES. Demestihas et al. (2017) demonstrated
that agricultural production and regulating ES could conflict in
agroecosystems. In our study, this synergy between regulating ES and
the trade-off with agricultural production varied greatly among the
leaves. In leaves 4 and 5, as shown in the general review of Abdalla
et al. (2019), cover crops simultaneously increase N provision to crops
(green manure effect), water regulation (decrease N leaching), and cli-
mate regulation (SOC sequestration) but this effect was not observed in
leaf 3. In the three leaves with a high frequency of cover crops (3, 4 and
5), we observed a lower mean level of agricultural production, which
could be due to a negative effect of cover crops, as observed by
Abdalla et al. (2019).

Our results also identified a major trade-off between agricultural
production and the N provision to crops for all leaves in nearly all
areas of the study, except leaf 1. In leaves 3, 4, and 5, the N provision
to crops was higher than the median, while agricultural production
was lower. This result may be explained by combined effects of i) a
higher yield of wheat and sugar beet (leaves 4 and 5), ii) the presence
of crops with low energy production - due either to low yield (sun-
flower) or low energy content (sugar beet and winter wheat) - in the
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crop rotation, iii) the presence of peas in the rotation (low yield and low
energy content) (leaf 4), and iv) the fact that cover crops support SOC
storage (Jarecki and Lal, 2003; Lee et al., 2019) and then function as
“green manure” (Jarecki and Lal, 2003). In leaf 2, the trade-off is the op-
posite of those in leaves 3, 4, and 5: a high level of agricultural produc-
tion and a low level of N provision to crops. This trade-off may exist
because farmers compensate for lower N fertility of the soil applying
more N fertilizer, as indicated by the high mean mineral/organic fertili-
zation (> 175 kg/ha) in these production situations.

4.3. Trade-offs between regulating services

In ES bundles of leaves 1 and 5, a trade-off appeared between water
provision to crops and blue water provision. For leaf 5, as shown in
the meta-analysis of Meyer et al. (2018) for temperate climates, the
high frequency of cover crops reduced water drainage and thus the
blue water provision. For leaf 1, the low available water capacity
(<100 mm) contributed to the low water retention in the soil, thus
promoting water drainage into deeper layers. The moderate magnitude
of this drainage, and thus blue water provision, can be explained by
the climate of these production situations in the study area which is
one of the driest areas in France, annual rainfall of less than 700 mm
(Joly et al.,, 2010). This low rainfall associated with low available
water capacity could also explain the moderately low level of water pro-
vision to crops.

In ES bundles of leaves 1, 4 and 5, major trade-off appeared between
water quality regulation and blue water provision. Certain soil proper-
ties (e.g. available water capacity) and agricultural practices (e.g. fre-
quency of cover crops, N mineral fertilization) were major drivers of
this trade-off (Fig. S1 in the Supplementary materials). In leaf 1, the
high blue water provision and low water quality regulation were asso-
ciated with low available water capacity (<100 mm) and high N fertil-
ization (>170 kg N ha™"), while the lack of cover crops resulted in high
N leaching. Conversely, in leaf 4 and 5, the low water provision and high
water quality regulation corresponded to cropping systems with mod-
erate fertilization (<160 kg N ha™1!), cover crops, and grown on soils
with high available water capacity (>150 mm).

4.4. Methodological advantages of multivariate regression trees

In this study, we present an innovative use of MRT to identify key ES
bundles and their drivers. One main advantage of the MRT method is its
ability to identify relations, non-linear effects, and threshold effects
when analyzing trade-offs/synergies. For example, the MRT distin-
guished effects of pH over a threshold of 6.75. From a management per-
spective, this threshold is relevant because it can be considered the level
required to promote expression of a certain ES bundle. Finally, the MRT
method does not require or assume any specific distributions within the
data (Smith et al., 2019), is simple to apply to datasets and is available in
free software, such as R.

4.5, Limitations and uncertainties of the MRT-based approach

The low R? (0.30) value in our study reflects the low explanatory
power of the tree. This low R? is related in part to the number of leaves
set in the final tree. To assess the influence of this choice, we explored
the optimal tree size that avoided overfitting (i.e. the “1se” criterion
(Breiman et al., 1984)) using an internal cross-validation procedure.
The resulting deeper tree contained 13 leaves and had an R? of 0.40 (re-
sults not shown). Even with this optimal tree, most of the variability
remained unexplained, which justified our choice of a five-leaf tree
that balanced descriptive power and interpretability of the results.
This unexplained variability may be related to the specific characteris-
tics of each production situation, since ES in agricultural systems de-
pend greatly on adapting agricultural practices to site-specific
characteristics (Duru et al., 2015). To overcome this limitation, our
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large-scale approach could be combined with more focused and de-
tailed analysis of particular situations. The former would be helpful for
designing regional policies or landscape management strategies, while
the latter would be more useful for designing management strategies
of specific situations.

The classic interpretation of trade-offs or synergies in each leaf of the
tree is usually based on visually interpreting the relative sizes of bars
plotted by the MRT method (Fig. S4 in the Supplementary material).
This interpretation could be more subjective than interpretations
based on more quantitative methods, such as pairwise correlation of
ES. One issue is how to define the boundary between a high vs. low
level of ES objectively. To address this issue, we replaced the usual bar
plots with boxplots and thus used the median of each ES value from
the entire sample as a reference. By comparing the median of each ES
per leaf with the median of the same ES for all leaves, we objectively de-
termined the relative level of each ES (Table 3) within leaves. However,
as a boundary, it assumes that all production situations within the PCUs
can produce the same level of each ES, while according to our results,
some production situations (e.g. within leaf 3) have limited ability to
provide certain ES.

Despite these limits, this study was the first to analyze and quantify
relationships between agricultural production and some regulating ES
in a variety of production situations in France. Our results provide
farmers and agricultural policy makers with basic information about
manageable drivers and associated target levels (thresholds) that can
be used to design ecosystem management strategies that promote a bal-
anced bundle of ES.

4.6. Relative influence of manageable and non-manageable drivers in MRT

To assess the extent to which adding non-manageable drivers to the
final tree might decrease the unexplained variance, in addition to the
final tree (Fig. 2), we generated a new five-leaf tree that also considered
drivers related to the climate (precipitation, average temperature, and
precipitation minus evapotranspiration) and additional non-
manageable soil properties (clay content and available water capacity).
In this new tree (Fig. S5 in the Supplementary material), clay content
and available water capacity appeared as key variables, but the tree's ex-
planatory power (41%) increased by only 11 percentage points. The cli-
mate variables tested may have added little explanatory power because
we investigated production situations in the same climate type (i.e. little
climate variability). Interestingly, comparison of the two trees devel-
oped shows that manageable drivers (e.g. cover crop frequency) influ-
ence ES relationships greatly and that farmers have opportunities to
manage them.

This new tree confirmed our hypothesis about the source of unex-
plained variance, which was related more to the high diversity of the
production situations investigated than to the potential exclusion of
key drivers in the tree. Thus, one way to decrease the unexplained var-
iance would be to focus analysis on a lower diversity of production
situations.

4.7. Effectiveness of multivariate regression trees for evaluating ES trade-
offs and synergies

According to Turkelboom et al. (2016), analysis of ES bundles should
(i) predict where and when trade-offs might occur, (ii) identify how to
reduce undesirable trade-offs and increase desirable synergies via man-
agement strategies, and (iii) promote transparent and honest dialogue
between concerned stakeholder groups. Our MRT-based approach ad-
dresses these three topics:

(i) It identifies production situations that provide different types of
bundles. Since each situation is associated with a spatially ex-
plicit PCU, it was simple to map the spatial distribution of these
bundles and the associated trade-offs and synergies. According



G. Obiang Ndong, J. Villerd, 1. Cousin et al.

to Hauck et al. (2013), ES maps have an air of authority and are
useful for governance and ecosystem management plans and
their ES.

(ii) The main strength of MRT, along with the use of boxplots to in-
terpret the results, is its ability to identify and characterize the
drivers of each ES bundle explicitly. For example, in leaf 5 we
identified that high blue water provision and low water quality
regulation were associated with patterns of the dominant crop
rotation (e.g. sugar beet and cover crop frequency, short crop ro-
tation such as wheat-beet) and associated management practices
(e.g. N fertilization), which were related to certain soil properties
(e.g. pH, available water capacity).

(iii) As discussed in other studies (Hamann et al., 2010; Smith et al.,
2019), the MRT approach is simple and intuitive to interpret, es-
pecially for non-scientists. The ease of interpretation is a major
advantage that promotes dialogue between scientists and
agricultural ecosystem managers (e.g. farmers and agricultural
policy makers). Moreover, it facilitates discussion between stake-
holders - such as ES beneficiaries — who can have contrasting in-
terests in a region. For example, in our study, the ES bundles in
leaf 2 could be interesting for farmers (due to an adequate supply
of agricultural production) and agricultural landscape managers
(due to a median supply of blue water associated with non-
degradation of water quality).

Our results for ES relationships and their drivers are built upon a
high diversity of non-irrigated cropping systems in the modified oceanic
climate of France. However, their general representativeness of this type
of agricultural system and of other systems (e.g. in a temperate climate)
remains to be defined based on the results of future studies.

5. Conclusion

We developed an original MRT-based approach to identify trade-offs
and synergies between ES. We demonstrated advantages of this ap-
proach for identifying relationships between agricultural production
and five key soil ES provided by agricultural ecosystems in 15,296 pro-
duction situations, distributed over the main arable area of France
(mainly the Paris basin of production).

Our MRT-based approach identified the spatial distribution of ES
bundles and their specific manageable drivers. For example, we demon-
strated that synergies between water quality regulation, N provision to
crops, and climate regulation were located mainly in the northeastern
region of the study area and influenced mainly by agricultural practices
such as the crop rotation (type of crop rotation and cover crop fre-
quency) and soil properties (e.g. pH, available water capacity). We iden-
tified that cover crop frequency, while promoting the three ES, can drive
the trade-off between water provision to crops and blue water provision
(i.e. between an ES to farmers and one to society). Identifying the man-
ageable drivers of ES bundles can help stakeholders define locally
adapted management strategies (e.g. introducing cover crops) to reduce
undesirable trade-offs between targeted ES and increase desirable syn-
ergies. Due to the mapping ability of the method, it can also promote di-
alogue between stakeholders, such as farmers and landscape managers,
to identify priority regions for promoting bundles of ES.

Because the MRT-based approach considers non-linear relationships
between ES and threshold effects of drivers, it can provide crucial infor-
mation to decision-makers. However, its relatively low explanatory
power highlighted the wide variety of ES relationships and their drivers
among production situations. Increasing the explanatory power re-
quires combining a large-scale approach to ES relationships with more
focused and detailed analysis of particular situations. While the former
would be helpful for designing regional policies or landscape manage-
ment, the latter would provide useful local information to farmers and
reflect their specific situations.
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As our study was based on model output, an interesting next step
would be to model effects of alternative cropping systems, such as in-
cluding a large number of cover crops in the rotation, to evaluate their
ability to modify the provision of certain ES. This approach could help
stakeholders address current issues related to climate and/or land-use
changes, such as identifying which cropping systems (crop rotation
and management) can reduce trade-offs between ES, such as water pro-
vision to crops and blue water provision.
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